This work contains 16 chapters selected from a five-volume reference work published in October 2000, Handbook of Nanostructured Materials and Nanotechnology. The chapters are arranged to provide a source of in-depth, practical knowledge for synthesis and fabrication of nanoscale materials, electrical and optical properties, supramolecular nanostructures, and bioassemblies. Some specific topics include silicon-based nanostructures, electronic transport properties of quantum dots, photorefractive semiconductor nanostructures, and linear and nonlinear optical spectroscopy of semiconductor nanocrystals. Intended for researchers, and students working in materials science, semiconductor technology, solid-state physics, chemistry, nanoscale science and technology, and biology. The editor works in the private sector
Author(s): Hari Singh Nalwa
Edition: 1st
Publisher: Academic Press
Year: 2001
Language: English
Pages: 859
Nanostructured Materials and Nanotechnology......Page 4
Copyright Page......Page 5
Contents......Page 10
About the Editor......Page 20
List of Contributors......Page 22
1. Introduction......Page 26
2. Synthesis of Nanostructured Materials......Page 27
3. Synthesis of Metals, Intermetallics, and Semiconductors......Page 30
References......Page 77
1. Introduction......Page 82
2. Nanocomposites Containing Elemental Nanoparticulates......Page 83
3. Nanocomposites Containing Nanoparticulate Substances......Page 93
References......Page 107
1. Introduction......Page 118
2. Low-Temperature–High-Pressure Powder Compaction......Page 121
3. Piston–Cylinder Die......Page 123
4. Compaction and Lubricants......Page 128
5. Compaction Equations for Powders......Page 148
6. Conclusions......Page 151
References......Page 152
CHAPTER 4. SEMICONDUCTOR NANOPARTICLES......Page 154
1. Introduction......Page 155
2. Preparation and Characterization......Page 156
3. Interfacial Charge Transfer Processes in Colloidal Semiconductor Systems......Page 162
4. Photocatalytic Applications......Page 166
5. Surface Modification of Semiconductor Colloids......Page 172
6. Ordered Nanostructures Using Semiconductor Nanocrystallites and their Functionality......Page 181
References......Page 192
1. Introduction......Page 208
2. Synthesis of Colloidal Quantum Dots......Page 210
3. Properties of III–V Quantum Dots......Page 213
References......Page 228
CHAPTER 6. STRAINED-LAYER HETEROEPITAXY TO FABRICATE SELF-ASSEMBLED SEMICONDUCTOR ISLANDS......Page 232
1. Introduction......Page 233
2. Basics of Heteroepitaxy......Page 236
3. Common Experimental Techniques......Page 240
4. Two-Dimensional Growth and Island Formation Before Transition to Three-Dimensional Growth......Page 242
5. Three-Dimensional Islands......Page 254
6. Physical Properties and Applications of Self-Assembled Islands......Page 262
7. Summary......Page 265
References......Page 266
CHAPTER 7. HYBRID MAGNETIC–SEMICONDUCTOR NANOSTRUCTURES......Page 272
1. Introduction......Page 273
2. Electrons in Microscopically Inhomogeneous Magnetic Fields......Page 274
3. Magnetic Field Profiles......Page 275
4. Quantum Motion in Nonhomogeneous Magnetic Fields......Page 280
5. Diffusive Transport of Electrons through Magnetic Barriers......Page 293
6. One-Dimensional Magnetic Modulation......Page 298
7. Two-Dimensional Magnetic Modulation......Page 313
8. Hall Effect Devices......Page 317
9. Nonpolarized Current Injection from Semiconductor Into Ferromagnets......Page 330
10. Spin Injection Ferromagnetic/Semiconductor Structures......Page 331
11. Ferromagnetic/Semiconductor Experimental Structures......Page 335
12. Nanoscale Magnets......Page 341
13. Superlattices of Nanoscale Magnet Layers and Semiconductors......Page 345
References......Page 347
1. Introduction......Page 354
2. Structure......Page 356
3. Growth......Page 358
4. Nanotube Properties......Page 365
5. Applications of Nanotubes......Page 378
6. Nanotubes Made from Noncarbon Materials......Page 380
7. Conclusions......Page 381
References......Page 382
CHAPTER 9. ENCAPSULATION AND CRYSTALLIZATION BEHAVIOR OF MATERIALS INSIDE CARBON NANOTUBES......Page 386
2. Methods of Opening, Filling, and Purifying Multiple- and Single-Walled Carbon Nanotubes......Page 387
3. Techniques for Filling Multiple-Walled Carbon Nanotubes and Some Reactions of the Included Materials......Page 390
4. Synthesis, Purification and Filling of Single-Walled Carbon Nanotubes......Page 399
5. Crystallization Behavior Inside Multiple- and Single-Walled Carbon Nanotubes......Page 401
References......Page 409
1. Introduction......Page 412
2. Optical Properties of Silicon and Related Materials......Page 414
3. Quantum Confinement......Page 421
4. Single-Electron Electronics......Page 457
5. Tips for Atomic Force Microscopy and Field Emission......Page 461
Acknowledgments......Page 463
References......Page 464
1. Introduction......Page 470
2. Theory......Page 473
4. Experimental Results......Page 478
5. Conclusions......Page 505
References......Page 506
CHAPTER 12. PHOTOREFRACTIVE SEMICONDUCTOR NANOSTRUCTURES......Page 508
1. Overview......Page 509
2. Photorefractive Quantum-Well Structures......Page 511
3. Electronic Transport and Grating Formation......Page 523
4. Optical Properties of Photorefractive Multiple Quantum Wells......Page 528
5. Diffraction......Page 533
6. Photorefractive Effects and Applications......Page 536
Acknowledgments......Page 583
References......Page 584
1. Introduction......Page 588
2. Energy States and Optical Transitions in Semiconductor Nanocrystals: Theoretical Models......Page 590
3. Experimental Studies of Energy Structures in Semiconductor Nanocrystals......Page 599
4. Fine Structure of the Lowest Exciton State......Page 607
5. Effects of Electron-Phonon Interactions on the Optical Spectra of Semiconductor Nanocrystals......Page 610
6. Band-Edge Optical Nonlinearities in Semiconductor Nanocrystals......Page 619
7. Carrier Dynamics in Semiconductor Nanocrystals......Page 636
8. Conclusions and Prospects......Page 659
Acknowledgments......Page 660
References......Page 661
1. Introduction......Page 666
2. Conventional Molecular Systems......Page 668
3. Supramolecular Systems......Page 676
4. Interlocked Molecular Systems......Page 696
5. Conclusions and Reflections......Page 711
References......Page 713
1. Introduction......Page 718
2. Learning From Nature: Bioactive Modules......Page 725
3. Artificial Systems: Applications and Examples......Page 732
4. Miscellaneous Examples......Page 764
Acknowledgments......Page 769
References......Page 770
1. Biological Molecules as Nanostructured Materials......Page 774
2. Scanning Probe Microscopy of Nanoscale Biological Assemblies......Page 776
3. Protein–Phospholipid Structures......Page 816
4. Surface-Immobilized Protein Nanostructures......Page 828
References......Page 840
Index......Page 848