Nanoscience: Friction and Rheology on the Nanometer Scale

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Friction force microscopy is an important analytical tool in the field of tribology on the nanometer-scale. The contact area between the probing tip and the sample is reduced to some square nanometers, corresponding to the ideal of a single asperity contact. Traditional concepts, such as friction coefficients, adhesion and elasticity and stick-slip are re-examined with this novel technique. New concepts based upon classical and quantum mehanics are investigated.

Author(s): Ernst Meyer, Rene M. Overney, K. Dransfeld, T. Gyalog
Year: 1999

Language: English
Pages: 392

Contents......Page 12
Foreword......Page 6
1.1 Introduction......Page 19
1.2 Short outline of the history of tribology......Page 22
1.3 Leonardo da Vinci (1452-1519)......Page 23
1.4 Guillaume Amontons (1663-1705)......Page 24
1.5 Leonhard Euler (1707-1783)......Page 25
1.6 Charles Augustin Coulomb (1736-1806)......Page 27
1.7.2 Wearless friction......Page 28
1.8 Friction on a macroscopic scale......Page 30
1.10 The shear strength......Page 31
1.11 The real area of contact......Page 32
Optical methods......Page 33
Resistance or conductance......Page 34
Fully plastic contact: The plastic junction theory......Page 35
Including adhesive forces: The JKR model......Page 36
Other approaches......Page 37
Validity of the above model contacts: The Maugis Dugdale theory......Page 38
The Greenwood and Williamson model (1966)......Page 39
Experimental observations of height distributions......Page 42
2.2 Tribometer experiments......Page 47
2.2.1 Plastic or elastic deformation......Page 48
2.2.2 Velocity dependence......Page 52
2.3.1 Electrical contact resistance......Page 54
2.3.3 Wear measurements......Page 56
Optical interferometry and spacer layer imaging method (SLIM)......Page 57
Nonlinear optical techniques......Page 58
2.3.6 Triboscopy......Page 61
2.4 Surface force apparatus......Page 62
2.4.1 Friction measurements with SFA......Page 67
2.4.3 Adhesion vs. friction......Page 68
2.5 Resonant stick-slip motion in colloidal crystals......Page 73
2.6 Quartz crystal microbalance......Page 75
2.7.1 Introduction to friction force microscopy......Page 76
2.7.3 Loading dependence......Page 80
2.7.4 2d-histogram technique......Page 85
2.7.5 Resolution limits......Page 91
2.7.6 Stiffness measurements: Ways to determine the contact area in FFM......Page 95
Normal contact stiffness measurements......Page 98
Lateral contact stiffness measurements......Page 99
2.8 Extensions of friction force microscopy: Nanosled experiments......Page 103
2.8.1 Outlook......Page 106
Covalent bonds......Page 117
Van der Waals forces......Page 118
3.2.2 Magnetic forces......Page 119
3.2.4 Capillary forces......Page 120
3.2.5 Short-range forces......Page 121
3.3.1 Empirical potentials......Page 123
3.3.2 Molecular dynamics......Page 125
3.3.3 Continuum elasticity theory......Page 129
3.3.4 Ab initio calculations......Page 130
3.4 True atomic resolution with normal forces......Page 133
4.1 Geometrical effects: The role of topography......Page 141
4.2 Step edges and Schwoebel barriers......Page 142
4.3.1 Introduction......Page 154
4.4 A modern analysis of Tomlinsons mechanism......Page 158
4.4.1 One-dimensional Tomlinson model......Page 159
4.4.2 Two-dimensional Tomlinson model......Page 161
The critical curve......Page 164
4.4.3 Instabilities and the superlubric phase......Page 165
4.5 Comparison of atomic-scale stick slip with the Tomlinson plucking mechanism......Page 166
4.5.1 Atomic-scale stick slip under ultrahigh vacuum conditions......Page 167
4.5.2 Zig-zag walk......Page 171
4.6.1 Introduction......Page 173
4.6.3 The one-dimensional Frenkel-Kontorova-Tomlinson model......Page 174
4.6.5 Two-dimensional commensurate structures......Page 175
4.6.6 The two-dimensional FKT model......Page 178
4.6.7 Symmetry of the force scan image......Page 179
Dependence on the misfit angle......Page 180
Domains, slip lines and misfit centers......Page 181
4.6.9 Finite area of contact......Page 183
5.1 Introduction......Page 193
5.4 Electronic friction......Page 194
5.5 Van der Waals friction......Page 196
5.6 Comparison......Page 197
6.1 Introduction......Page 199
6.2.1 Elastic moduli and free energy relations......Page 200
6.2.2 Special cases of elasticity and methods......Page 203
6.2.3 Fundamental equations of fluid flow......Page 205
6.2.4 Unsteady flow and viscous boundary layers......Page 208
6.2.5 Hydrodynamic lubrication......Page 210
6.2.6 Extended regimes of lubrication......Page 214
6.2.7 Viscoelastic lubricants......Page 217
6.2.8 Linear viscoelasticity of solids......Page 218
6.2.9 Mechanical models......Page 221
6.3 Nanorheological and shear behavior of confined liquids......Page 223
6.3.1 Dynamic surface forces apparatus studies on confined liquids......Page 224
6.3.2 Dynamic force microscopy study on liquids......Page 232
6.3.3 Viscous friction force measurements between lubricated surfaces......Page 235
6.3.4 Theoretical shear simulations and mechanical models......Page 237
6.4 Nanorheological and shear behavior of complex liquids......Page 239
6.4.1 Rheological and shear properties of confined complex liquids composed of polymer brushes and solvent......Page 240
6.4.2 Rheological and shear properties of compressed polymer layers melts......Page 242
6.4.3 Film thickness variations of compressed polymer layers under shear......Page 246
6.4.4 Nanorheological properties of interfacially confined films......Page 247
6.4.5 Lateral confinement of simple liquids......Page 253
6.4.6 Measurements of interfacial and lateral confinement of low viscosity liquids......Page 256
6.4.7 Dewetting-shear-apparatus......Page 262
6.4.8 A list and summary of distinct confinements......Page 263
6.5.1 Introductory remarks......Page 265
6.5.2 Static deformations and sinusoidal perturbations......Page 266
6.5.3 Elastic indentation models of surfaces......Page 270
6.5.4 Static force measurements on polymeric systems......Page 271
6.5.5 Resolution limits of force modulation measurements......Page 275
6.5.6 Procedure of scanning force modulation measurements......Page 276
6.5.8 Three-fold measurements: Topography, lateral force and force modulation......Page 278
6.5.9 Determination of mechanical properties of polymer blends......Page 279
6.5.10 Molecular mobility, interfaces and surface glass temperature......Page 281
6.5.12 Surface mechanical properties measured by lateral forces......Page 283
6.5.13 Surface stresses as indicators of surface instabilities......Page 284
6.5.14 Static and dynamic force-displacement measurements......Page 286
6.5.15 Ultrasonic force method......Page 288
6.5.17 Scanning static elastic method......Page 289
6.5.18 Summarizing critical remarks......Page 291
7.2 Introduction......Page 305
7.3 The stick-slip process between flat surfaces with adsorbed soft molecules......Page 307
7.4 Stick-slip processes between ideally flat surfaces without adsorbed soft molecules......Page 309
7.6 Excitation of ultrasonic waves by friction between rough surfaces Theoretical considerations......Page 311
7.7 Previous experimental studies of acoustic emission......Page 314
7.8 Proposed experiments for the detection of high frequency ultrasonic waves generated by friction......Page 315
7.10 Conclusions......Page 316
7.11 Acknowledgements......Page 317
7.12 References......Page 318
8.1.1 Langmuir-Blodgett films......Page 321
8.1.4 Silicon and silicon oxides......Page 324
8.1.5 III-V Semiconductors......Page 327
8.2 Anisotropy of friction......Page 328
8.3.1 Humidity dependence: Mica......Page 331
8.3.2 Humidity dependence: MoS2-platelets on Mica and Al2 O3......Page 332
8.4.2 PTFE on silicon......Page 337
8.4.3 SAM on SAM......Page 338
8.4.4 Chemical force microscopy......Page 342
8.5 Traditional and new concepts to understand the material-specific contrasts of FFM......Page 344
9.1 Cantilevers......Page 355
Thermal vibrations......Page 356
9.1.2 Minimum forces and Q-factor......Page 357
9.1.3 Preparation of cantilevers......Page 358
Electron tunneling......Page 362
Laser beam deflection......Page 364
Piezoresistivity and piezoelectricity......Page 365
9.3.1 Calibration of scanner......Page 366
9.3.2 Calibration of lateral forces......Page 367
9.4.1 Imaging modes......Page 372
9.4.2 Force vs. distance curves......Page 375
Index......Page 385