Nanoscale Interface for Organic Electronics

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The scope of this book will be focused on the interface issues and problems in organic materials as electronic device applications. The organic material electronics is a rapidly progressing field for potential applications in flexible field effect transistors, plastic solar cells, organic luminescent devices, etc. However, the performance of these organic devices is still not sufficient. To enhance the understanding and practical applications of organic devices, we need to understand the fundamental organic device physics which is somewhat different from the conventional inorganic device physics. This book will discuss the detailed progress in these topics.

Author(s): Mitsumasa Iwamoto, Young-Soo Kwon, Takhee Lee
Publisher: World Scientific
Year: 2010

Language: English
Pages: 387
Tags: Специальные дисциплины;Наноматериалы и нанотехнологии;Наноэлектроника;

CONTENTS......Page 10
PREFACE......Page 6
Part 1 Nanoscale Interface......Page 13
1. Introduction......Page 15
2. Order Parameter and Organic Device Application......Page 16
3. Nanoscale Interface for Organic Electronic Devices......Page 18
References......Page 20
1. Introduction......Page 21
2. Contact Resistance Definition......Page 23
3. Effect of Electric Field on Contact Resistance......Page 26
4.1. Transmission Line Method (TLM)......Page 28
4.2. Other Electrical Measurements......Page 29
4.3. Kelvin Probe Force Microscopy (KFM)......Page 30
4.4. Time-Resolved Microscopic Second-Harmonic Generation (TRM-SHG)......Page 31
5.1. Influence of Device Setup......Page 32
5.2. Where is the Limit for Contact Resistance?......Page 35
References......Page 36
CHAPTER 3 INTERFACE CONTROL OF VERTICAL-TYPE ORGANIC TRANSISTORS......Page 39
1. Introduction......Page 40
2. Vertical-Type Organic Transistors......Page 41
3. Interface Control of Vertical-Type Organic Transistor......Page 44
4. Organic Inverter Based on Vertical-Type Organic Transistors......Page 49
5. Vertical-Type Organic Light-Emitting Transistor......Page 54
6. Summary......Page 55
References......Page 56
1. Introduction......Page 61
2.1. Overview......Page 65
2.2. Theory and Equivalent Circuit of QCM......Page 66
2.3. Measurement Principle of Resonance Parameters......Page 68
3.2. Electrode Modification......Page 69
3.3. Apparatus and Measurement System......Page 70
4.1. Verification of Self-Assembly by Resonant Frequency Shift......Page 71
4.2. Redox Reaction and Electrochemical QCM Response......Page 72
4.3. Electrochemistry of the Hb/Viologen-Modified Gold Electrode......Page 73
4.4. Catalytic Properties of the Sensor Towards H2O2......Page 74
4.5. Optimum Conditions of the Biosensor for Detecting H2O2......Page 75
4.6. Amperometric Response of the Biosensor......Page 77
5. Conclusions......Page 78
References......Page 79
1. Introduction......Page 81
1.1. Structure and Operation of OLED Device......Page 82
1.2. Emission Mechanism of OLED Device......Page 84
2. Ligands Coordinated to Ir(III), Zn(II) and Sn(IV)......Page 89
3.1. Blue Emitting Materials......Page 92
3.2. Green Emitting Materials......Page 94
3.3. Red Emitting Materials......Page 98
3.4. White Emitting Diodes by Ir(III), Zn(II) and Sn(IV) Complexes......Page 100
References......Page 102
1. Introduction......Page 105
2.1. Two Complementary Colors versus Three Primary Colors......Page 106
2.2. All Fluorescent- versus All Phosphorescent versus Hybrid-WOLEDs......Page 108
2.3. Excimer- versus Exciplex-WOLEDs......Page 109
2.4. PIN- and Tandem-WOLEDs......Page 111
2.5. Sensitizer- and Microcavity-WOLEDs......Page 112
3. WOLEDs Based on Wet-Process......Page 113
3.1. White Emission from Single Polymer......Page 114
3.2.2. Polymer Host/Phosphorescent Small Molecular Dopants Blending......Page 118
3.2.3. Small Molecular Host/Phosphorescent Small Molecular Dopants/Polymer Binder Blending......Page 119
3.3. WOLEDs Based on Color Conversion Method......Page 121
3.4. Wet-Coating Techniques for the Multilayer Formation......Page 122
4. Conclusions and Outlook......Page 123
References......Page 125
Part 2 Molecular Electronics......Page 131
1. Introduction......Page 133
2. Fabrication of Molecular Devices......Page 135
3.1. Possible Conduction Mechanisms......Page 137
3.2. Tunneling Models......Page 138
4.1. Statistical Analysis of Electronic Properties of Alkanethiols in Metal-Molecule-Metal Junctions......Page 140
4.2. Statistical Method for Determining Intrinsic Electronic Properties of Alkanethiols in Nanoscale Molecular Junctions......Page 148
5.1. Statistical Analysis of Electronic Properties of Alkanethiols and Alkanedithols......Page 153
5.2. Length-Dependent Decay Coefficients by Multi-Barrier Tunneling Model......Page 154
6. Conclusions and Outlook......Page 158
References......Page 159
1.1. A Redox-Active Ruthenium Complex as a Molecular Switch......Page 163
1.2. Design of a Monolayer Non-Volatile Memory Device with a Ruthenium Complex......Page 165
2.1. Material Synthesis and Characterization......Page 166
2.2. Surface Chemical Analysis......Page 167
3.1. Current/Voltage Response of Single Ruthenium Complexes......Page 168
3.2. A Proposed Model for Electron Trapping in RuII Terpyridine Complexes......Page 173
4.1. Fabrication of a Large-Area Molecular Device......Page 176
4.2. Current/Voltage Response of a MMNVM Device with RuII Terpyridine Complexes......Page 178
5. Conclusion......Page 181
References......Page 182
1. Introduction......Page 187
2.1. Materials......Page 189
2.2.1. Analysis of Self-Assembled Monolayers Using QCM and STM......Page 190
2.2.2. Cyclic Voltammetry Test and Charge Transport Measurement......Page 191
2.2.3. Analysis of the Characteristics of Electric Conduction......Page 193
3. Analysis of Self-Assembled Monolayers Using STM......Page 194
4.1. Oxidation and Reduction According to Changes in Electrolytes......Page 196
4.2. Characteristics of Interfacial Charge Transport Caused by the Change in Mass......Page 197
5. Electric Conductive Characteristics of Viologen Derivatives......Page 198
6. Conclusion......Page 201
Acknowledgment......Page 202
References......Page 203
CHAPTER 10 TIME-AVERAGED DEUTERIUM NMR STUDIES OF THE DYNAMIC PROPERTIES FOR A LOW MOLAR MASS NEMATIC......Page 205
1. Introduction......Page 206
2. Theory......Page 209
3. The Experiments......Page 213
4. Results and Discussion......Page 216
Acknowledgments......Page 232
References......Page 233
1. Introduction......Page 235
2. Electrochemomechanical Deformation of Conducting Polymers......Page 237
3. Stress-Strain Characteristics of Polymer Actuators......Page 241
5. Training of PPy Actuators Under high Tensile Loads......Page 242
6. Training of PANi Film......Page 245
7. Fatigue of Artificial Muscles......Page 249
References......Page 251
Part 3 Polymer Electronics......Page 254
1. Introduction......Page 255
2.1. SP Excitation......Page 257
2.2. Method of ATR, Scattered Light and Emission Light Measurements Utilizing SP Excitations......Page 259
3.1. Evaluation of Surface Roughness of Organic Ultrathin Films by Scattered Light Measurement......Page 261
3.2. Evaluation of Orientations of Liquid Crystal Molecules in a Cell by ATR Method......Page 264
3.3. Application of SP Excitations to Organic Photoelectric Cell......Page 267
4.1. Emission Lights from Organic Ultrathin Films......Page 269
4.2. SP Emission Lights due to Molecular Luminescence and Interaction......Page 273
4.3. Application of SP Emission Lights to Organic Devices......Page 275
4.4. Electrochemical SP Excitations and Emission Lights......Page 278
4.5. Grating Coupling SP Excitations and SP Emission Lights......Page 280
5. Conclusions......Page 282
References......Page 283
1. Introduction......Page 285
2. Conjugated Polymer and Experimental Procedure......Page 286
3. Uniform Film of PDOF-MEHPV by Electrophoretic Deposition......Page 288
3.1. Optical Absorption Spectra of PDOF-MEHPV Films......Page 289
3.2. Atomic Force Microscope Images of PDOF-MEHPV Films......Page 292
4. Preparation of Flat and Dense Conjugated Polymer Films from Dilute Solution......Page 294
4.1. Scanning Electron Micrographs of PDOF-MEHPV......Page 295
4.3. PEDOT Coating Effect on Deposition......Page 297
5. Fabrication of PDOF-MEHPV Light-Emitting Devices by Electrophoretic Deposition......Page 299
5.1. Structure of PDOF-MEHPV Light-Emitting Devices......Page 300
5.2. Chracterization of PDOF-MEHPV Light-Emitting Devices......Page 302
6. Electric Current in PDOF-MEHPV Suspensions......Page 304
7. Conclusions......Page 305
References......Page 306
1. Introduction......Page 309
2.2. Dielectric Ink......Page 311
2.3. Semiconductive Ink......Page 313
2.4. Substrate......Page 315
2.5. R2R Gravure......Page 316
3. R2R Gravure Printed Circuits on PET Foils......Page 318
3.1. R2R Gravure Printed p-Channel SWNT-TFTs for Circuit Design Simulations......Page 319
3.2. 2R Gravure Printed Inverters......Page 322
3.3. R2R Gravure Printed Ring Oscillators......Page 323
3.4. R2R Gravure Printed D Flip-Flop......Page 327
4. Conclusions......Page 328
References......Page 329
1. Introduction......Page 331
2. PVD of Polymer Thin Films......Page 332
3. Direct Evaporation of Polymers......Page 334
4.2. Deposition Polymerization of Polyimide......Page 337
4.3. Deposition Polymerization of Polyurea......Page 338
4.4. Other Polymers Prepared by Codeposition Method......Page 340
5.1. Deposition Polymerization of Vinyl and Acryl Monomers......Page 341
5.2. Preparation of Fluoropolymer by Radical Polymerization......Page 342
5.3. Deposition Polymerization of Carbazole Polymers......Page 344
5.4. Application to Light-Emitting Diodes......Page 346
5.5. Application to Photopatterning......Page 349
6.1. The Concept of Surface-Initiated Deposition Polymerization......Page 350
6.2. Interface Control by Surface-Initiated Deposition Polymerization......Page 351
6.3. Formation of Polypeptide Thin Films......Page 353
7. Conclusion......Page 355
Acknowledgments......Page 356
References......Page 357
CHAPTER 16 NANOSCALE BIOELECTRONIC DEVICE CONSISTING OF BIOMOLECULES......Page 359
1. Introduction......Page 360
2.1.1. Optimal Deposition Condition of Chlorophyll a Langmuir-Blodgett Film......Page 363
2.2. Self-Assembly (SA) Technique......Page 364
2.2.1. ph Effect of Recombinant Protein Monolayer on Au Surface by Self-Assembly Technique......Page 365
2.2.2. Nanoscale Film Formation of Recombinant Azurin Variants with Various Cysteine Residues on Gold Substrate......Page 366
2.2.3. Temperature Dependent Redox Reaction of Recombinant Protein Thin Film......Page 367
2.2.4. Surfactant CHAPS Effect of Bioelectronic Device......Page 369
3.1. Nanoscale Biophoto Diode......Page 370
3.2.1. A Basic Concept of Protein-Based Biomemory Device......Page 372
3.2.2. Write-Once-Read-Many-Times (WORM) Biomemory Device......Page 375
3.2.3. Multi-Bit Biomemory Device......Page 376
3.2.4. Multi-Level Biomemory Device......Page 378
3.3. Biomolecular Electroluminescence Device......Page 380
4. Conclusions and Outlook......Page 382
References......Page 383