With this handbook, the distinguished team of editors has combined the expertise of leading nanomaterials scientists to provide the latest overview of this field. They cover the whole spectrum of nanomaterials, ranging from theory, synthesis, properties, characterization to application, including such new developments as quantum dots, nanoparticles, nanoporous materials, nanowires, nanotubes, and nanostructured polymers. The result is recommended reading for everybody working in nanoscience: Newcomers to the field can acquaint themselves with this exciting subject, while specialists will find answers to all their questions as well as helpful suggestions for further research.
Author(s): C. N. R. Rao, Achim Müller, Anthony K. Cheetham
Edition: 1
Publisher: Wiley-VCH
Year: 2007
Language: English
Pages: 424
Tags: Специальные дисциплины;Наноматериалы и нанотехнологии;Нанохимия;
Nanomaterials Chemistry......Page 4
Contents......Page 8
Preface......Page 14
List of Contributors......Page 16
1.2.1 Semiconductor Nanocrystals......Page 20
1.2.2 Metal Nanocrystals......Page 23
1.2.3 Nanocrystals of Metal Oxides......Page 25
1.3.1 Anisotropic Growth of Semiconductor and Oxide Nanocrystals......Page 26
1.3.2 Anisotropic Growth of Metal Nanocrystals......Page 33
1.4 Selective Growth on Nanocrystals......Page 36
1.5.1 Electronic and Optical Properties......Page 37
1.5.2 Magnetic Properties......Page 40
1.6.1 One- and Low-dimensional Arrangements......Page 41
1.6.2 Two-dimensional Arrays......Page 43
1.6.3 Three-dimensional Superlattices......Page 45
1.6.4 Colloidal Crystals......Page 48
1.7.1 Optical and Electro-optical Devices......Page 49
1.7.2 Nanocrystal-based Optical Detection and Related Devices......Page 50
1.7.4 Biomedical Applications of Oxide Nanoparticles......Page 52
1.7.5 Nanoelectronics and Nanoscalar Electronic Devices......Page 53
1.8 Conclusions......Page 54
References......Page 55
2.2.1 Synthesis......Page 64
2.2.2 Purification......Page 69
2.2.3 Functionalization and Solubilization......Page 73
2.2.4.1 Optical, Electrical and Other Properties......Page 79
2.2.4.2 Phase Transitions, Mechanical Properties, and Fluid Mechanics......Page 85
2.2.4.4 Chemical Sensors......Page 87
2.2.5 Biochemical and Biomedical Aspects......Page 88
2.2.6 Nanocomposites......Page 90
2.2.7 Transistors and Devices......Page 91
2.3.1 Synthesis......Page 94
2.3.2 Solubilization and Functionalization......Page 96
2.4.1 Synthesis......Page 98
2.4.2 Self Assembly and Functionalization......Page 109
2.4.4 Optical Properties......Page 111
2.4.5 Electrical and Magnetic Properties......Page 116
2.4.6 Some Chemical Aspects and Sensor Applications......Page 119
2.4.7 Mechanical Properties......Page 120
2.4.8 Transistors and Devices......Page 121
2.4.9 Biological Aspects......Page 122
References......Page 123
3.2 Introduction......Page 138
3.3 Short Introduction to Aqueous and Nonaqueous Sol–Gel Chemistry......Page 139
3.4.1 Surfactant-controlled Synthesis of Metal Oxide Nanoparticles......Page 140
3.5.2 Reaction of Metal Halides with Alcohols......Page 146
3.5.3 Reaction of Metal Alkoxides with Alcohols......Page 149
3.5.4 Reaction of Metal Alkoxides with Ketones and Aldehydes......Page 150
3.5.5 Reaction of Metal Acetylacetonates with Various Organic Solvents......Page 151
3.6 Selected Reaction Mechanisms......Page 152
3.7 Summary and Outlook......Page 153
References......Page 154
4.1 Introduction......Page 158
4.2.1 Theory of Nucleation......Page 159
4.2.2 Mechanism of Growth......Page 160
4.2.2.1 Diffusion Limited Growth: Lifshitz–Slyozov–Wagner (LSW) Theory and Post-LSW Theory......Page 162
4.2.2.2 Reaction-limited Growth......Page 166
4.2.2.3 Mixed Diffusion–Reaction Control......Page 167
4.3 Experimental Investigations......Page 170
4.3.1 Au Nanocrystals......Page 172
4.3.2 ZnO Nanocrystals......Page 173
4.3.3 Effect of Capping Agents on Growth Kinetics......Page 179
4.3.3.1 Effect of Oleic Acid on the Growth of CdSe Nanocrystals......Page 180
4.3.3.2 PVP as a Capping Agent in the Growth of ZnO Nanocrystals......Page 182
4.3.3.3 Effect of Adsorption of Thiols on ZnO Growth Kinetics......Page 185
4.4 Concluding Remarks......Page 186
References......Page 187
5.2 Introduction......Page 190
5.3 Cyclic Peptide-based Nanostructures......Page 191
5.4 Linear Peptide-based Nanostructures......Page 193
5.5 Amyloid Fibrils as Bio-inspired Material: The Use of Natural Amyloid and Peptide Fragments......Page 196
5.6 From Amyloid Structures to Peptide Nanostructures......Page 197
5.8 Prospects......Page 199
References......Page 200
6.1 Introduction to Surface Plasmons......Page 204
6.1.1 Propagating Surface Plasmons......Page 205
6.1.2 Localized Surface Plasmons......Page 208
6.2.1 Size of Nanoparticle......Page 209
6.2.2 Shape of Nanoparticle......Page 210
6.2.3 Dielectric Environment......Page 213
6.3 Excitation of Localized Surface Plasmons......Page 215
6.3.1 Multipole Resonances......Page 216
6.3.2 Absorption vs. Scattering......Page 219
6.4.1 Assembly of Nanospheres......Page 223
6.4.2 Assembly of Nanorods......Page 227
6.5 Summary and Outlook......Page 234
References......Page 235
7.2 Introduction......Page 238
7.3 Nanostructured Hybrid Materials......Page 239
7.4 Electrochemical Energy Storage......Page 241
7.5 Electrochemical Capacitors......Page 242
7.5.1 Electrochemical Double Layer Capacitor vs. Conventional Capacitor......Page 244
7.5.2 Origin of Enhanced Capacitance......Page 245
7.6.1 Nanostructured Transition Metal Oxides......Page 248
7.6.2 Nanostructured Conducting Polymers......Page 249
7.6.3 Carbon Nanotubes and Related Carbonaceous Materials......Page 250
7.7 Hybrid Nanostructured Materials......Page 253
7.7.1 Conducting Polymer–Transition Metal Oxide Nanohybrids......Page 254
7.7.2 Conducting Polymer–Carbon Nanotube Hybrids......Page 256
7.7.3 Transition Metal Oxides–Carbon Nanotube Hybrids......Page 257
7.8 Hybrid Nanostructured Materials as Electrolytes for Super Capacitors......Page 260
7.8.2 Ionic Liquids as Supercapacitor Electrolytes......Page 261
7.9 Possible Limitations of Hybrid Materials for Supercapacitors......Page 262
7.10 Conclusions and Perspectives......Page 263
References......Page 264
8.1 Introduction......Page 268
8.2 Synthetic Methods......Page 269
8.3.1 Molecular Modeling and Intrinsic Viscosity Studies......Page 281
8.3.2 Fluorescence Properties......Page 283
8.3.3 Endo- and Exo-Receptor Properties......Page 284
8.4.1 Vapor Sensing......Page 286
8.4.3 Vapoconductivity......Page 289
8.4.4 Sensing CO and CO(2)......Page 290
8.4.5 Gas and Vapor Sensing in Solution......Page 291
8.4.6 Chiral Sensing of Asymmetric Molecules......Page 294
8.4.7 Fluorescence Labeled Dendrimers and Detection of Metal Cations......Page 296
8.4.8 Anion Sensing......Page 298
8.5.1 Acetylcholinesterase Biosensor......Page 300
8.5.2 Dendrimers as Cell Capture Agents......Page 301
8.5.4 Layer-by-Layer Assembly Using Dendrimers and Electrocatalysis......Page 302
8.5.5 SAM–Dendrimer Conjugates for Biomolecular Sensing......Page 303
8.5.6 Dendrimer-based Calorimetric Biosensors......Page 307
8.5.7 Dendrimer-based Glucose Sensors......Page 308
References......Page 311
9.1 Introduction......Page 318
9.2 Device Operations and Electrical Characterization......Page 319
9.3 Device Fabrication......Page 320
9.3.1 Substrate Treatment Methods......Page 323
9.3.2 Electrode Materials......Page 324
9.5 Progress in p-Channel OFETs......Page 325
9.6 Progress in n-Channel OFET......Page 328
9.7 Progress in Ambipolar OFET......Page 329
9.8 PhotoPFETs......Page 330
9.9 Photoeffects in Semiconducting Polymer Dispersed Single Wall Carbon Nanotube Transistors......Page 332
9.10 Recent Approaches in Assembling Devices......Page 333
References......Page 335
10.1 Introduction......Page 338
10.2 Catenanes and Rotaxanes......Page 339
10.2.1 Synthetic Routes to Catenanes and Rotaxanes......Page 340
10.2.2.1 Preparation and Properties of [2]-Catenanes......Page 341
10.2.2.2 Multiple Catenanes......Page 342
10.2.2.3 Switchable Catenanes......Page 343
10.2.2.4 Other Synthetic Routes to Paraquat-based Catenanes......Page 345
10.2.2.6 Switchable Catenanes......Page 347
10.2.3.1 Approaches to Redox-switchable Catenanes and Rotaxanes......Page 348
10.2.3.2 Making More Complex Structures......Page 351
10.2.3.3 Routes to [n]-Rotaxanes using Olefin Metathesis – Molecular Barcoding......Page 352
10.2.3.4 Anion-templating......Page 354
10.2.3.5 Other Approaches to Ion-templating......Page 356
10.2.4.1 Catenane and Knotane Synthesis......Page 357
10.2.4.2 Routes to Functional Catenanes and Rotaxanes......Page 358
10.2.4.3 Catenanes and Rotaxanes Derived from Dialkyl Ammonium Salts......Page 365
10.2.5 Cyclodextrin-based Rotaxanes......Page 367
10.3 Molecular Logic Gates......Page 368
References......Page 371
11.1 Introduction......Page 376
11.2 Electronic Inhomogeneities – Experimental Evidence......Page 377
11.3 Theoretical Approaches to Electronic Inhomogeneities......Page 383
11.4 The lb Model for Manganites......Page 385
11.5 The Extended lb Model and Effects of Long-range Coulomb Interactions......Page 389
11.6 Conclusion......Page 399
References......Page 401
Index......Page 404