Nanomaterials and Surface Engineering

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book covers a wide range of topics that address the main areas of interest to scientists, engineers, and students concerned with the synthesis, characterization and applications of nanomaterials. Development techniques, properties, and examples of industrial applications are all widely represented as they apply to various nanostructured materials including nanocomposites and multilayered nanometric coatings. It is recommended to anyone working in the field of nanomaterials, especially in connection with the functionalization and engineering of surfaces.Content:
Chapter 1 Architecture of Thin Solid Films by the GLAD Technique (pages 1–30): Nicolas Martin, Kevin Robbie and Luc Carpentier
Chapter 2 Transparent Polymer Nanocomposites (pages 31–52): Anne Christmann, Claire Longuet and Jose?Marie Lopez Cuesta
Chapter 3 Nanostructures by Ion Irradiation (pages 53–88): Jean?Claude Pivin
Chapter 4 Microencapsulation (pages 89–108): Claude Roques?Carmes and Christine Millot
Chapter 5 Decorative PVD Coatings (pages 109–162): Raymond Constantin, Pierre?Albert Steinmann and Christian Manasterski
Chapter 6 Microwave Chemistry and Nanomaterials (pages 163–206): Didier Stuerga and Thierry Caillot
Chapter 7 Aluminum?Based Nanostructured Coatings Deposited by Magnetron Sputtering for Corrosion Protection of Steels (pages 207–226): Frederic Sanchette, Cedric Ducros and Alain Billard
Chapter 8 Nanolayered Hard Coatings for Mechanical Applications (pages 227–246): Frederic Sanchette, Cedric Ducros and Guillaume Ravel
Chapter 9 Plating of Nanocomposite Coatings (pages 247–270): Patrice Bercot and Jamal Takadoum
Chapter 10 Nanostructured Coatings (pages 271–292): Guy Baret and Pierre Paul Jobert
Chapter 11 Characterization of Coatings (pages 293–328): Jamal Takadoum
Chapter 12 High Temperature Oxidation Resistance of Nanocomposite Coatings (pages 329–348): David Pilloud and Jean?Francois Pierson

Publisher: Wiley-ISTE
Year: 2010

Language: English
Pages: 365
Tags: Специальные дисциплины;Наноматериалы и нанотехнологии;

Title Page......Page 2
Copyright
......Page 3
Contents......Page 4
Preface......Page 13
1.1. Introduction......Page 16
1.2. The GLAD technique......Page 17
1.2.1. Deposition with an oblique angle......Page 18
1.2.2. Deposition on mobile substrate
......Page 20
1.3.1.1. Crystallography......Page 23
1.3.1.2. Porosity......Page 24
1.3.1.3. Surface morphology......Page 25
1.3.2.1. Elasticity......Page 27
1.3.2.2. Hardness......Page 30
1.3.3.1. Filtering......Page 31
1.3.3.2. Birefringency......Page 34
1.3.4.1. Conductivity......Page 35
1.3.4.2. Photonics......Page 37
1.4. Conclusions and outlooks......Page 38
1.5. Bibliography......Page 39
2.1. Introduction......Page 46
2.2. Nanoparticle modifications......Page 47
2.2.1.1. Grafting of silanes......Page 48
2.2.1.3. Silane coating......Page 49
2.2.2.2. “Grafting from?......Page 50
2.2.3.1. Silica coating......Page 51
2.2.3.2. Polymer coating......Page 53
2.3.1. Nanoparticles......Page 54
2.3.2. Transparent polymers used as matrices......Page 55
2.3.3.1. Melt blending......Page 56
2.3.3.3. In situ synthesis......Page 57
2.3.4.1. Optical properties......Page 58
2.3.4.2. Thermomechanical and mechanical properties......Page 59
2.4. Conclusion......Page 60
2.5. Bibliography......Page 62
3.1. Introduction......Page 68
3.2.1. The slowing down process......Page 70
3.2.2. Spatial distribution of damages in collisional regime......Page 72
3.2.3. Damaging by electronic slowing down in swift heavy ion tracks......Page 73
3.3.1. Implantation......Page 74
3.3.1.1. Concentration gradients in implantation layers......Page 75
3.3.1.2. Variety of structures obtained by IBS......Page 76
3.3.2.2. Surface relief induced by the combined effects of erosion and diffusion......Page 78
3.3.3. Ion beam assisted deposition IBAD and ion beam deposition IBD of monoatomic ions or clusters......Page 79
3.3.4. Ion beam mixing......Page 80
3.3.5. Patterning......Page 82
3.4.1.1. Properties of tracks in organic polymers......Page 83
3.4.1.2. Semi-organic polymers and gels......Page 86
3.4.2. Filters and templates......Page 88
3.4.3. Dissolution or growth of particles in composites......Page 89
3.4.4. Modification of magnetic properties......Page 90
3.5. Conclusions......Page 91
3.6. Appendix: basic formula of ion stopping......Page 92
3.7. Bibliography......Page 97
4.1. Introduction......Page 103
4.2. The processes of microencapsulation [BUR 94, CHA 04, COU 96, GHO 06, GIU 95, ISR 94, PIE 04]......Page 105
4.2.1.1. Coacervation......Page 106
4.2.1.2. Evaporation of solvant......Page 108
4.2.2. Chemical processes......Page 109
4.2.3. Other chemical and physico-chemical methodologies......Page 110
4.2.4. Fluidized bed equipment......Page 111
4.2.5. Other physical processes......Page 113
4.3. Kinetics of release [CRA 75, HIG 60, HIG 61, MAR 93]......Page 114
4.4. Conclusion [DUB 86, LEH 92, MUR 98, NEL 02, OKA 85, ROS 04]......Page 119
4.5. Bibliography......Page 121
5.1. Introduction......Page 123
5.2. Concept of color......Page 124
5.3. Representation and measurement of color......Page 126
5.4.1. Reactive gas flow......Page 127
5.4.2. Influence of oxygen in the layers......Page 128
5.4.3. Influence of ion bombardment......Page 131
5.4.4. TiN ZrN + Au coatings......Page 133
5.4.5. Combination TiN ZrN/Au + galvanic plating......Page 138
5.4.6. Nanostructured TiN/ZrN coatings Patent pending EP04103220.2......Page 140
5.4.7. Coating color......Page 141
5.4.8. Hardness and nanostructure of coatings......Page 142
5.5.1. Chromium nitride coatings......Page 146
5.5.3. Tantalum nitride TaN coatings......Page 148
5.6.1. State of the art......Page 152
5.6.2. TiAl N, C, O coatings......Page 153
5.8.1. Optical interference coatings [GIA 93]......Page 159
5.8.2.1. Introduction......Page 161
5.8.2.2. Masking and anodizing......Page 162
5.9.2. Protection by galvanic underlayers......Page 164
5.9.3. Multilayer PVD coatings and superlattices......Page 165
5.9.5. Amorphous PVD coatings as corrosion barriers......Page 167
5.10. Bibliography......Page 169
6.2.1. Nanomaterials: a magic word......Page 176
6.2.2.1. The solid routes SR......Page 177
6.2.3. Microwave chemistry: an emerging area......Page 178
6.2.4. Microwave soft solution processes MSSP......Page 179
6.3. Microwave nanomaterials: from single oxides to metallic clusters......Page 180
6.3.1. Size and size distribution......Page 187
6.3.3. Side products......Page 188
6.3.5. Physical and chemical properties......Page 189
6.3.6. Formation mechanisms......Page 190
6.3.7.1. The aqueous solutions......Page 191
6.3.7.4. The polyols......Page 192
6.3.8. Are there microwave effects?......Page 193
6.4.1. Limits of precipitation......Page 195
6.4.3. Advantages of thermal hydrolysis......Page 196
6.4.4. Microwave induced thermal hydrolysis......Page 198
6.5.1. Advantages of microwave heating and autoclave......Page 199
6.5.2. The RAMO system......Page 200
6.5.3.3. The polycrystal area......Page 201
6.5.3.5. Types of oxide......Page 202
6.6.3. Environment and green chemistry......Page 204
6.7. Bibliography......Page 205
7.1. Introduction......Page 220
7.2.1. Introduction and limits of conventional hard coatings......Page 221
7.2.2. Control of elaboration conditions of coatings obtained by magnetron sputtering of composite targets Al-TM TM = transition metal......Page 223
7.2.3. Microstructure and morphology......Page 225
7.2.4.1. Internal stresses......Page 227
7.2.4.2. Hardness......Page 228
7.2.4.3. Young’s modulus......Page 230
7.2.5. Intrinsic corrosion resistance......Page 234
7.2.5.1. Al-Cr-N and Al-Ti-N ternary alloys......Page 235
7.4. Bibliography......Page 237
8.1.1. A little history......Page 240
8.1.2. Origin of hardness......Page 241
8.1.3. Towards coatings hardening......Page 242
8.2. Towards an ultrahard coating ? nanostructuring of transition-elements nitrides obtained by cathodic arc evaporation......Page 243
8.2.1. Elaboration and characterizations of microstructure and morphology......Page 244
8.2.1.1. Period control......Page 245
8.2.1.2. Crystallographic microstructure......Page 247
8.2.1.3. Morphology......Page 248
8.2.2.1. Hardness and Young’s modulus......Page 249
8.2.2.2. Friction coefficient ? tribological behavior......Page 250
8.2.2.3. Inconel 718 machining performances......Page 251
8.3. Towards a low friction coefficient coating: nanostructuring of carbon- and silicon-based materials elaborated by plasma enhanced chemical vapor deposition......Page 253
8.5. Bibliography......Page 256
9.1. Introduction......Page 260
9.2.2. Electrolytic co-deposition of metal/particles......Page 261
9.2.3.1. Guglielmi model 1972......Page 262
9.2.3.2. Buelens, Celis and Roos model 1983......Page 264
9.3.1. Parameters related to the baths......Page 267
9.3.2.4. Pulsed current......Page 268
9.3.3.1. Stirring......Page 269
9.3.3.2. Stirring device......Page 270
9.3.4.2. Surface charge and usage of surfactant......Page 271
9.4.2. Mechanical properties......Page 273
9.4.2.1. Hardness......Page 274
9.4.3. Chemical properties......Page 275
9.6. Conclusion......Page 276
9.7. Bibliography......Page 277
10.1. Introduction......Page 284
10.2.1. Elaboration processes......Page 285
10.2.2. Characterization......Page 287
10.2.2.1. Dry techniques......Page 289
10.2.2.2. Wet techniques......Page 290
10.3. Applications......Page 291
10.3.1.1. Coatings with Cr2O3......Page 292
10.3.1.2. Structural reinforcement of polymers......Page 294
10.3.2. Biocides......Page 296
10.3.3. Coatings for fire retardancy......Page 297
10.3.4. The next applications......Page 299
10.4.1. Define the working conditions......Page 301
10.4.4. Improve the knowledge......Page 302
10.5. Economical aspects......Page 303
10.7. Bibliography......Page 304
11.1. Hardness......Page 306
11.1.1. The indentation size effect......Page 307
11.1.2. Hardness tests for coated materials......Page 308
11.1.2.1. Buckle’s model [BUC 65]......Page 309
11.1.2.2. The Jonsson and Hogmark model [JON 84]......Page 311
11.1.2.3. The Burnett and Rickerby model [BUR 87a, BUL 01a]......Page 314
11.1.2.4. The Chicot and Lesage model [CHI 95]......Page 316
11.2. Coating adhesion......Page 317
11.2.1. Methods for adherence testing......Page 318
11.2.1.1. The peeling test......Page 319
11.2.1.3. The scratch test......Page 320
11.2.1.4. Interfacial indentation......Page 326
11.3.1. Origin of internal stresses......Page 328
11.3.3. Determining residual stresses using x-ray diffraction [MAC 86, MAE 88, SPR 80]......Page 329
11.4. Bibliography......Page 336
12.1. Introduction......Page 341
12.2. Nanocomposite coating concept......Page 342
12.3. Methods for nanocomposite coating elaboration......Page 343
12.4. Structural characterization......Page 345
12.5. High temperature oxidation behavior......Page 348
12.5.1. Structure of the oxide layer formed during oxidation of nanocomposite coatings......Page 349
12.5.2. Kinetic study of high temperature oxidation of nanocomposite coatings......Page 352
12.6. Conclusion......Page 355
12.7. Bibliography......Page 356
List of Authors......Page 360
Index......Page 364