Nanomaterials and Nanocomposites Exposures to Plants: Response, Interaction, Phytotoxicity and Defense Mechanisms

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book looks at the interaction between plants and nanomaterials/nanocomposites, and their effects ecology, the food chain and human health. It focuses on nanomaterials/nanocomposites phytotoxicity, which is an important precondition to promote the application of nanotechnology and to avoid the potential ecological risks. It describes the influencing factors of nanotoxicity of  nanomaterials and the mechanisms of these toxic effects and defense mechanisms in plants. The chapters in this book are written by internationally renowned researchers and professionals and provides exciting and remarkable information (on the above-mentioned topics) to the scientist, researcher and student working field of plant biology, agricultural science, nanobiotechnology, plant biochemistry, plant physiology, plant biotechnology and many other interdisciplinary subjects.

Author(s): Azamal Husen
Series: Smart Nanomaterials Technology
Publisher: Springer
Year: 2023

Language: English
Pages: 385
City: Singapore

Preface
Contents
About the Editor
Nanomaterials and Nanocomposites: Significant Uses in Plant Performance, Production, and Toxicity Response
1 Introduction
2 Types of Nanomaterials
2.1 Inorganic Nanomaterials
2.2 Organic-Based Nanomaterials
2.3 Carbon-Based Nanomaterials
2.4 Composite-Based Nanomaterials
3 Application of Nanoparticles in Agriculture
3.1 Plant Growth Management
3.2 Disease Management
4 Toxic Implications of Nanomaterials on Seed Germination, Plant Growth and Activity
5 Conclusion and Future Prospects
References
Nanomaterials and Nanocomposites Exposures to Plants: An Overview
1 Introduction
2 Classification of Nanoparticles
2.1 Metal-Based Nanoparticles
2.2 Chitosan-Based Nanoparticles
2.3 Carbon-Based Nanomaterials
2.4 Nanocomposites
3 Application of Nanomaterials and Their Beneficial Effects on Plants
3.1 Nano-Priming
3.2 Foliar Application of Nanoparticles
3.3 Addition of Nanoparticles and Nanocomposites to the Soil
4 Conclusions and Future Perspective
References
Phytotoxicity Response and Defense Mechanisms of Nanocomposites/Mixture of Nanoparticles
1 Introduction
2 Nanomaterials/Nanocomposites Characteristics
3 NMs Uptake by Plants
4 Phytotoxicity of Nanomaterials/Nanocomposites
5 Plant Response to Nanomaterials’ Toxicity
5.1 Physiological Indicators
5.2 Biochemical Indicators
6 Plants Defense Mechanism
6.1 Antioxidative Defense Mechanism
6.2 Gene Modification
7 Conclusions and Future Outlook
References
Phytotoxicity Responses and Defence Mechanisms of Heavy Metal and Metal-Based Nanoparticles
1 Introduction
2 Toxicity Caused by Metals in Plants
2.1 Seed Growth and Germination Process
2.2 Inhibited Root Elongation
2.3 Cell Membrane and Cell Wall
2.4 Effect on Photosynthesis
2.5 Oxidative Stress and Lipid Peroxidation
2.6 Genotoxicity
3 Phytotoxicity Induced by Nanoparticles
3.1 Phytotoxic Effect of Nanoparticles on Soil
3.2 Phytotoxic Effect of Nanoparticles on Plants
3.3 Regulation of Metabolic Pathways Due to ENPs Toxicity
3.4 Impact on Human Health via Food Chain
4 Foliar Application of Nanomaterials
4.1 Outcomes of Application of Foliar NPs on Flora
5 Plant Defensive Mechanism to Mitigate HM Stress
5.1 Phytoremediation of Heavy Metals
5.2 Effect of AMF and Regulation of ENMs Toxicity on Plants
5.3 ENMs Immobilisation in Soil by AMF Hyphae Secretion
5.4 Membrane Transport Genes Inhibition by AMF
5.5 Effect of AMF on Oxidative Stress Caused by ENMs
5.6 Promotion of Enzymatic Activity in Soil and Enhancement of Nutrient Transformation by Rhizosphere
5.7 Improvement in Biomass Production in Mycorrhizal Plants
5.8 Exogenous Supply of Chemical Compounds for Reducing Toxicity
6 Conclusion and Future Perspectives
References
Synergistic Effect of Nanomaterials, Nanocomposites and Heavy Metals on Plant Growth
1 Introduction
2 Heavy Metals (HMs)
2.1 Effect of Heavy Metals on Plant
3 Nanoparticles/Nanomaterials
3.1 Effect of Nanoparticles on Plant Growth
3.2 Effect of Zinc Oxide Nanoparticles on Plant Growth
3.3 Effect of Iron Oxide Nano-Particles (Fe2O3) on Plant Growth
3.4 Effect of Silver Nanoparticles (Ags NPs) on Plant Growth
3.5 Effect of Titanium Dioxide (TiO2) Nanoparticles on Plant Growth
4 Synergistic Effect of Nanoparticle and Heavy Metals on Plant Growth
4.1 Synergistic Effect of ZnO Nanoparticles (ZnO NPs) and Heavy Metals on Plant Growth
4.2 Synergistic Effect of Iron Oxide Nano-Particles (Fe2O3) and Heavy Metals on Plant Growth
4.3 Synergistic Effect of Silver Nanoparticles (AgsNPs) and Heavy Metals on Plant Growth
4.4 Synergistic Effect of Titanium Dioxide (TiO2) Nanoparticles and Heavy Metals on Plant Growth
5 Conclusion
References
Effects of Nanomaterials/Nanocomposites on Trace Element Uptake and Phytotoxicity
1 Introduction
2 Synthesis of Nanostructured Materials, Uptake Process, Translocation of Nanoparticles in Plant System as Well as Their Impact on Trace Element Uptake and Phytotoxicity
2.1 Synthesis of Nanostructured Materials
2.2 Mechanisms of Absorption and Translocation of Nanomaterials by Plants
3 Positive and Negative Effects (Oxidative Stress and Phytotoxicity) of Nanostructured Materials on Plants System
3.1 Nanoparticles and Their Effect on Plants
3.2 Nanomaterials and Their Impact on Seed Germination
3.3 Beneficial Effects of Nanomaterials on Plant Growth and Yield
3.4 Beneficial Effects of Nanomaterials on Photosynthesis
4 Production of Reactive Oxygen Species and Antioxidant System in Plants in Response to Nanostructured Materials: Negative Effects (Phytotoxicity)
4.1 Application of Nanoparticles and Their Phytotoxicity: Oxidative Stress in Plants Induced by the Application of Nanostructured Materials
5 Conclusion
References
Toxicity Assessment of Silver Nanoparticles and Silver Ions on Plant Growth
1 Introduction
2 Effect on Seed Germination
3 Effect on Leaf, Root, and Shoot Growth
4 Effect on Photosynthetic Pigments
5 Effect on Other Parameters
6 Conclusion
References
Toxicity Assessment of Gold Ions and Gold Nanoparticles on Plant Growth
1 Introduction
2 Applications of Gold Nanoparticles
3 Preparation of Nanoparticles
4 Au NPs Synthesis by Chemical Methods
4.1 Turkevich Method
4.2 Burst Method
4.3 Seed-Mediated Growth
4.4 Digestive Ripening Method
5 Biosynthesis of AuNPs
6 Adverse Effects of AuNPs and Gold Ions in the Development of Plant Growth
6.1 Cell Wall and Cell Membrane Destruction
6.2 Disruption of Essential Proteins
6.3 Aggregation of AuNPs in Plasmodesmata
6.4 Root Growth Reduction by Gold Ions
6.5 Overexpression of ROS Causing Programmed Cell Death (PCD)
7 Conclusion
References
Plant Response to Silicon Nanoparticles: Growth Performance and Defense Mechanisms
1 Introduction
2 Methods of Synthesis of SiNPs
2.1 Physical Method (Top–Down Approach)
2.2 Chemical Method (Bottom Up Approach)
2.3 Biological Method
3 Role of Silicon Nanoparticles in Plant Growth Performance
3.1 Seed Germination
3.2 Plant Growth
3.3 Photosynthetic Regulation
3.4 Rhizosphetic Microbiome
3.5 Biotic and Abiotic Stress Tolerance
4 Conclusion
References
Exploring the Effects of Iron Nanoparticles on Plants: Growth, Phytotoxicity, and Defense Mechanisms
1 Introduction
2 Plant Phytotoxicity that Caused by Iron Nanoparticles
3 Defense Mechanism of Against the Toxicity of Iron Nanoparticles
4 Conclusion and Future Outlooks
References
Iron Oxide Nanoparticles: Plant Response, Interaction, Phytotoxicity and Defense Mechanisms
1 Introduction
2 Iron Oxide Nanoparticles as “Nano-Fertilizers”
3 Plant Response Towards Iron Oxide Nanoparticles (Fe2O3)
4 Iron Oxide Nanoparticles Interaction with Plant
5 Phytotoxicity Under Iron Oxide Nanoparticles
6 Defense Mechanism in Plant Under Iron Oxide Nanoparticles
7 Conclusion
References
Zinc Oxide Nanoparticles: Plant Response, Interaction, Phytotoxicity, and Defence
1 Introduction
2 ZnONPs-Induced Plant Responses
3 ZnONP Uptake and Transport in Plants
4 Phytotoxicity of ZnONPs
5 Conclusion
References
Titanium Oxide Nanoparticles: Plant Response, Interaction, Phytotoxicity, and Defence Mechanisms
1 Introduction
2 Synthesis of Titanium Oxide NPs
2.1 Chemical and Physical Methods
2.2 Biological or Green Synthesis
3 Application of TiO2 NPs in Agriculture
4 Interaction and Response of Plants to TiO2 NPs
4.1 Interaction with Plants
5 Phytotoxicity Caused by TiO2 NPs
6 Defence Mechanism in Plants
7 Conclusion
References
Aluminum Oxide Nanoparticles: Plant Response, Interaction, Phytotoxicity, and Defense Mechanism
1 Introduction
2 Plant Response Against Aluminum Oxide Nanoparticles
2.1 Uptake of NPs
2.2 Translocation of Nanoparticles in Plants
2.3 Effects of Al2O3 NPs
3 Phytotoxicity of Aluminum Oxide Nanoparticles
4 Aluminum Oxide Nanoparticles and Plant Interaction Pathway—Molecular Crosstalk During Stress Responses
5 Toxicity Mechanisms in Plants Induced by Aluminum Oxide NPs
6 Defense Mechanisms in Plants Induced by Aluminum Oxide NPs—Avoidance/Exclusion and Tolerance Mechanisms
7 Defect/Toxicity Induced by Aluminum Oxide NPs Transfer to the Next Generation and Trophic Level
8 Conclusion and Future Aspects
References
Cerium Oxide Nanoparticle: Plant Response, Interaction, Phytotoxicity and Defense Mechanims
1 Introduction
2 Cerium Oxide Nanoparticle
2.1 Plant Responses to Cerium Oxide Nanoparticles (CeO2 NPs)
2.2 Interactions of Plants and Cerium Oxide Nanoparticles
2.3 Phytotoxicity of Cerium Oxide Nanoparticles
2.4 Defense Mechanims Roles of Cerium Oxide Nanoparticles
3 Conclusion
References
Elucidation of Synergistic Interaction Among Metal Oxide Nanoparticles and PGPR on the Plant Growth and Development
1 Introduction
2 Nanoparticles Mediated Positive Effects on Plant Growth Attributes
3 Mechanistic Approach of PGPR to Improve the Plant Development
4 Interactive Effect of Nanoparticles and PGPR on Various Plants
4.1 Interaction Between Silver Nanoparticles and PGPR
4.2 Interaction Between Titania Nanoparticles and PGPR
4.3 Interactive Effect of Gold Nanoparticles and PGPR
4.4 Combined Effect of Nano-Carbon and PGPR
4.5 Interaction Among Silica Nanoparticles and PGPR
4.6 Interaction Between Zinc Nanoparticles and PGPR
4.7 Positive Effect of Nano-Chitosan and PGPR
5 Key Role of Nanotechnology with PGPR
5.1 Application of Nano-fertilization with PGPR
5.2 Use of Nano-Encapsulation with PGPR
6 Conclusion
References
Interaction Between Metal Nanoparticles and PGPR on the Plant Growth and Development
1 Introduction
2 Metal Nanoparticles and PGPR
2.1 Silver Nanoparticles
2.2 Gold Nanoparticles
2.3 Copper Nanoparticle
3 Metal Oxide Nanoparticles
3.1 Titanium Dioxide Nanoparticles
3.2 Zinc Oxide Nanoparticles
3.3 Iron Oxide Nanoparticles
4 Impact on Plant Growth
4.1 Biotic Stress Management
4.2 Abiotic Stress Management
5 Conclusion and Future Prospects
References
Nanomaterials and Their Toxicity to Beneficial Soil Microbiota and Fungi Associated Plants Rhizosphere
1 Introduction
2 Nanotechnology and Nanomaterials: An Update
3 Nanoparticle Emission into the Environment
4 Nanoparticle Toxicity to PGPR
5 Nanoparticle Toxicity to Fungi
6 Mechanism of Nanoparticle Toxicity
6.1 Cytotoxicity
6.2 Genotoxicity
6.3 Immunogenecity
7 Effect of Nanoparticle Toxicity on Fungi and Bacteria
8 Conclusion and Future Prospects
References