Nanomaterials: Advances and Applications

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book highlights recent advances and evolution of various nanomaterials and their potential in diverse research fields. The book covers the synthesis and characterization of various nanomaterials, followed by discussion on desired applications such as clean and green renewable energy, coating, sensors, thermal applications, microelectronics, biomedical applications such as drug carriers, nutrition, biosensors and detection of cancer cells.  The chapters in this book not only illustrate the capability of nanomaterials in such novel usages but also reveal their potential drawbacks and the possible ways to overcome the pitfalls. The book covers interdisciplinary research advancement of nanomaterials, beneficial for researchers and professionals working in both science and engineering.

Author(s): Dheeraj Kumar Singh, Sanjay Singh, Prabhakar Singh
Publisher: Springer
Year: 2023

Language: English
Pages: 373
City: Singapore

Preface
Acknowledgements
Contents
Editors and Contributors
1 An Overview of Nanomaterials: History, Fundamentals, and Applications
1.1 Historical Overview
1.2 What Happened at the Nanoscale?
1.3 Classification of Nanomaterials
1.4 Synthesis of Nanomaterials
1.4.1 Top-Down Approach
1.4.2 Bottom-Up Approach
1.4.3 Characterization of Nanomaterials
1.5 Applications of Nanomaterials
1.6 Conclusions
References
2 Carbon-Based Nanomaterials: Carbon Nanotube, Fullerene, and Carbon Dots
2.1 Introduction
2.2 Synthesis of Carbon Nanomaterials
2.2.1 CNT Synthesis
2.2.2 Fullerene Synthesis
2.2.3 Carbon Dot Synthesis
2.3 Properties of Carbon Nanomaterials
2.4 Application of Carbon Nanomaterials
2.4.1 Energy Storage Application
2.4.2 Biomedical Applications
2.4.3 Electrochemical Sensing
2.5 Conclusion and Future Perspective
References
3 Graphene-Based Materials: Synthesis and Applications
3.1 Introduction
3.2 Synthesis of Graphene
3.2.1 Mechanical Exfoliation
3.2.2 Graphite Intercalation
3.2.3 Chemical Synthesis
3.2.4 Chemical Vapor Deposition
3.2.5 Epitaxial Growth on Silicon Carbide (SiC)
3.2.6 Growth from Metal–Carbon Melts
3.2.7 Other Methods
3.3 Characterization of Graphene-Related Materials
3.3.1 X-Ray Diffraction (XRD)
3.3.2 Scanning Electron Microscopy (SEM)
3.3.3 Transmission Electron Microscope (TEM)
3.3.4 Ultraviolet Visible Spectroscopy (UV–Vis)
3.3.5 Atomic Force Microscopy (AFM)
3.3.6 Raman Spectroscopy
3.4 Applications of Graphene Materials
3.4.1 Field-Effect Transistors (FET)
3.4.2 Sensors
3.4.3 Transparent Conductive Films
3.4.4 Battery
3.4.5 Solar Cell
3.5 Conclusion and Future Perspective
References
4 Metal Nanoparticles: Synthesis, Characterization, and Biomedical Applications
4.1 Introduction
4.2 Synthesis of Metal Nanoparticles
4.3 Characterization of Metal Nanoparticles
4.3.1 Spectroscopic Characterization
4.3.2 SEM Analysis
4.3.3 TEM Analysis
4.3.4 AFM Analysis
4.3.5 FTIR Analysis
4.3.6 XRD Analysis
4.4 Metal Nanoparticles for Biomedical Applications
4.4.1 Chemotherapy
4.4.2 Phototherapy
4.4.3 Immunotherapy
4.4.4 Radiotherapy
4.4.5 Gene Silencing
4.5 Conclusion and Future Perspective
References
5 Metal Oxide Nanoparticles: Synthesis, Properties, Characterization, and Applications
5.1 Introduction
5.2 Synthesis of MONPs
5.2.1 Physical Methods
5.2.2 Chemical Methods
5.2.3 Green Synthesis
5.3 Characterizations of MONPs
5.4 Properties of MONPs
5.4.1 Optical Properties
5.4.2 Transport Properties
5.4.3 Mechanical Properties
5.4.4 Thermal Properties
5.5 Applications of MONPs
5.5.1 Solar Cells (SCs)
5.5.2 Batteries
5.5.3 Sensors
5.5.4 Fuel Cells
5.5.5 Biomedical Applications
5.5.6 Wastewater Treatment
5.6 Conclusion and Future Perspective
References
6 Nanocrystalline High Entropy Alloys and Oxides as Emerging Materials for Functional Applications
6.1 Introduction
6.1.1 Definition of HEAs
6.1.2 High Entropy Effect
6.1.3 Sluggish Diffusion Effect
6.1.4 Severe Lattice Distortion
6.1.5 Cocktail Effect
6.2 Prediction of Phase Formation Through Thermodynamic Parameters
6.3 High Entropy Oxides
6.4 Synthesis of HEAs and HEOs
6.4.1 Synthesis Through Mechanical Alloying
6.4.2 Synthesis Through Microwave-Assisted Method
6.4.3 Chemical Routes of Synthesis
6.5 Properties of HEAs and HEOs
6.5.1 Mechanical Properties
6.5.2 Magnetic Properties
6.6 Advanced Functional Applications of HEAs and HEOs
6.6.1 Electrode Materials for Electrochemical Energy Storage
6.6.2 HEAs as Hydrogen Storage Materials
6.6.3 Waste Water Treatment
6.6.4 Catalyst Materials
6.6.5 Microwave Absorbing Materials
6.7 Conclusions and Future Outlooks
References
7 Layered Chalcogenides: Evolution from Bulk to Nano-Dimension for Renewable Energy Perspectives
7.1 Introduction
7.2 Synthesis and Characterization Techniques of Transition Metal Dichalcogenides
7.2.1 Top-Down Methods
7.2.2 Bottom-Up Methods
7.3 Properties of Transition Metal Dichalcogenides
7.3.1 Electronic Properties
7.3.2 Optical Properties
7.3.3 Thermal Properties
7.3.4 Magnetic Properties
7.3.5 Mechanical Properties
7.4 Application of TMDCs
7.4.1 Application of 2D TMDCs as Photodetectors
7.4.2 Application of 2D TMDCs for Gas Sensing
7.4.3 Application of 2D TMDCs in Green Energy Harvesting
7.4.4 Application of 2D TMDCs in Green Electronics for Low-Power and High-Performance Integrated Circuits
7.4.5 Application of 2D TMDCs in Electrochemical Energy Conversion and Storage Application
7.4.6 Application of 2D TMDCs for Wastewater Treatment
7.4.7 Biomedical Application of 2D TMDCs
7.5 Conclusions and Future Outlook
References
8 Recent Escalations in MXenes: From Fundamental to Applications
8.1 Introduction
8.2 Preparation of MXene Such as Transition Metal Nitrides and Carbides
8.2.1 Top-Down Technique
8.2.2 Bottom-Up Technique
8.3 Properties of MXene
8.3.1 Mechanical Properties
8.3.2 Thermal Properties
8.3.3 Structural Properties
8.3.4 Magnetic Properties
8.3.5 Optical Properties
8.3.6 Electronic Properties
8.4 Applications
8.4.1 Lithium-Ion Batteries (LIBs)
8.4.2 Supercapacitors (SCs)
8.4.3 Electromagnetic Interference Shielding
8.4.4 Sensors
8.4.5 Other Sensors
8.5 Conclusion and Outlook
References
9 Nanocomposite Ceramics for Energy Harvesting
9.1 Introduction
9.2 Classification of Nanocomposites Ceramics
9.3 Synthesis and Processing Techniques of Nanocomposite Ceramics
9.3.1 Solid-State Route
9.3.2 Sol–Gel Method
9.3.3 Pechini Method
9.3.4 Laser Synthesis Route
9.3.5 Melt Synthesis Route
9.3.6 Co-precipitation Route
9.3.7 Hydrothermal Synthesis
9.4 Characterization of Nanocomposites Ceramics
9.5 Physical Properties of Ceramic Nanocomposite
9.5.1 Mechanical Properties
9.5.2 Thermal Properties
9.5.3 Optical Properties
9.5.4 Magnetic Properties
9.5.5 Electrical Properties
9.6 Applications of Nanocomposite Ceramics
9.7 Nanocomposite Ceramics for Energy Conversion and Storage
9.7.1 Nanocomposite Ceramics for Fuel Cells (NANOCOFC)
9.7.2 Nanocomposite Ceramics for Solar Cells
9.7.3 Nanocomposite Ceramics for Batteries
9.7.4 Nanocomposite Ceramics for Supercapacitor
9.8 Nanocomposite Ceramics Applications in Energy Harvesting
9.8.1 Multifunctional Materials for Energy Harvester and Sensor
9.8.2 Piezoelectric, Mechano-Magneto-Electric, and Triboelectric Energy Harvesting
9.8.3 Thermoelectric Energy Harvesting
9.9 Conclusions and Future Perspective
References
10 Polymeric Nanocomposites: Synthesis, Characterization, and Recent Applications
10.1 Introduction
10.2 Synthesis of Polymeric Nanocomposite
10.2.1 Solution Casting
10.2.2 Melt Intercalation
10.2.3 In-Situ Polymerization
10.2.4 Template Synthesis
10.2.5 Exfoliation Adsorption Process
10.3 Properties of Polymeric Nanocomposites
10.4 Characterization of Polymeric Nanocomposites
10.4.1 X-Ray Diffraction (XRD)
10.4.2 Electron Microscopy
10.4.3 Infrared Spectroscopy
10.4.4 Thermal Analysis
10.5 Applications of Polymeric Nanocomposites
10.5.1 Biomedical Applications: Drug Delivery; Cancer Therapeutics; Gene Delivery
10.5.2 Corrosion Control
10.5.3 Fuel Cell Applications
10.5.4 Semiconductor
10.5.5 Thermal Conductive
10.5.6 Microelectronics, Optoelectronics, and Sensors
10.5.7 Magnetic Storage
10.6 Conclusion and Future Outlook
References
11 Nanotechnology for Biomedical Applications
11.1 Introduction
11.2 Nanotechnology Explored in the Biomedical Field
11.2.1 Polymeric Nanoparticles
11.2.2 Lipid Nanoparticles
11.2.3 Metallic Nanoparticles
11.2.4 Non-metallic Nanoparticles
11.3 Biomedical Applications of Nanomaterials
11.3.1 Drug Delivery
11.3.2 Gene Delivery
11.3.3 Diagnosis and Imaging
11.3.4 Biosensors
11.3.5 Tissue and Implant Engineering
11.3.6 Therapeutic Potential of Nanomaterials
11.4 Theranostic Applications of Nanomaterials
11.4.1 Recent Developments in Theragnostic Applications Using Nanomaterials
11.5 Recent Advancements in Nanotechnology
11.6 Limitations of Nanoparticles for the Biomedical Application
11.7 Conclusions and Future Perspectives
References
12 Nanomaterials in Animal Nutrition and Disease Treatment: Recent Developments and Future Aspects
12.1 Introduction
12.2 Animal Health: General Aspect
12.3 Use of Nanomaterials as a Nutritional Supplement
12.3.1 Zinc Oxide Nanoparticles
12.3.2 Selenium Nanoparticles
12.3.3 Copper Oxide Nanoparticles
12.3.4 Other Nanomaterials
12.4 Strategies to Treat Animal Diseases Using Nanoparticles
12.4.1 Bacterial Infections
12.4.2 Viral Diseases
12.4.3 Protozoan Diseases
12.4.4 Others
12.5 Nanotechnology-Enabled Vaccines for Animal Diseases
12.5.1 Viral Diseases
12.5.2 Bacterial Diseases
12.5.3 Parasitic Diseases
12.6 Nanomaterial-Based Nutraceuticals
12.7 Limitations of Using Nanoparticles for Animal Health and Nutrition and Way Forward
12.8 Conclusion and Future Prospects
References