Nanomaterial Interactions with Plant Cellular Mechanisms and Macromolecules and Agricultural Implications

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book focuses on the recent progress of nanotechnology with emphasis on the interaction between nanoparticles and plants on the cellular level. It is devoted to understanding the pathways of nanomaterials entry into plant cell and their influence on cellular organelle processes and influence on crop yield. It consists of 16 chapters grouped in 3 parts: Part I Cellular mechanisms, Part II Cellular macromolecules, and Part III Implications of nanomaterials. Chapters present the plant response to nanomaterial applications including morphological, physiochemical, and anatomical changes and their effect on plant growth and productivity. The book discusses the mechanisms of absorbance and translocation of nanoparticles and their interaction with the plant cellular biochemical compounds and organelles. It presents the current perspective of nanomaterials influence on cellular processes which include photosynthesis, photorespiration and pigment synthesis and accumulation. In addition, it provides current understanding of the impact of nanomaterials on cellular macromolecules including carbohydrates, lipids, nucleic acids, proteins, hormones, and antioxidant defense activities. Collectively, these processes and biochemical compounds have implications on crop yield. Chapters are written by globally recognized scientists and subjected to a rigorous review process to ensure quality presentation and scientific precision. Chapter begins with an introduction that covers similar contexts and includes a detailed discussion of the topic accompanied by high-quality color images, diagrams, and relevant details and concludes with recommendations for future study directions.
Chapter "Impact of Nanomaterials on Plant Secondary Metabolism" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.

Author(s): Jameel M. Al-Khayri, Lina M. Alnaddaf, S. Mohan Jain
Publisher: Springer
Year: 2023

Language: English
Pages: 508
City: Cham

Preface
Contents
Contributors
1 Introduction: Impact of Nanotechnology on Plant Cell Biology
1.1 Introduction
1.2 Cellular Mechanisms
1.2.1 Adsorption
1.2.2 Penetration
1.2.3 Cell Wall
1.2.4 Translocation
1.2.5 Photosynthetic
1.2.6 Pigments
1.2.7 Secondary Metabolites
1.2.8 Phytotoxicity
1.2.9 Gene Expression
1.3 Cellular Macromolecules
1.3.1 Carbohydrates and Lipids
1.3.2 Nucleic Acid
1.3.3 Hormones
1.3.4 Proteins
1.3.5 Enzymatic and Non-Enzymatic Antioxidant
1.4 Preparation and Features of NM
1.4.1 Nanocellulose
1.4.2 2D-Nanosheets
1.5 Implications of Nanomaterials on Crop
1.5.1 Nutritional Value
1.5.2 Abiotic Stresses
1.5.3 Tissue Culture
1.6 Conclusions and Prospects
References
Part I Cellular Mechanisms
2 Effect of Nanomaterials on Water and Solutes Translocation in Plants
2.1 Introduction
2.2 Nanomaterials Uptake and Transport Mechanisms
2.2.1 Uptake and Transport
2.2.2 Movement Inside Plants
2.2.3 Interaction of NMs with Plant Cells
2.2.4 Foliar Exposure and Uptake of NPs
2.3 Nanomaterials Transformation in Rhizosphere and Plants
2.3.1 Aspects Impacting Root Uptake of NPs
2.3.2 Integrated Root Uptake and Translocation Pathways of NPs
2.4 Explore Nanomaterials in Plants Using Advanced Methods
2.4.1 Analysis in Quantitative Form
2.4.2 Analysis of Speciation and Location
2.4.3 Analytical Methods Based on Stable Isotopes
2.4.4 Physiological, Biochemical and Biological Processes Affected by NPs
2.5 NPs Phytotoxicity
2.5.1 Phytotoxic of Silica NPs
2.5.2 Phytotoxicity and Genotoxicity of TiO2 NPs
2.6 Conclusions and Prospects
References
3 Response of Plant Photosynthesis to Nanomaterials
3.1 Introduction
3.2 Interaction of NPs with the Plant Systems
3.3 Role of NPs in Plant Photosynthesis
3.4 NPs and Their Diverse Impact on Plant Photosynthetic Systems
3.5 Conclusion and Prospects
References
4 Impact of Nanomaterials on Chlorophyll Content in Plants
4.1 Introduction
4.2 Nanomaterials and Nanostructured Nanomaterials (NMs)
4.2.1 Metallic NMs
4.2.2 Metal Oxides NMs
4.2.3 Carbon-Based NMs
4.3 Nanomaterials in Agriculture
4.4 Interaction of NMs and NSMs with Plant Tissue and Cells
4.5 NMs and NSMs and Photosynthesis
4.6 Conclusion and Prospects
References
5 Interactions of Nanomaterials with Plant Pigments
5.1 Introduction
5.2 Nanomaterial’s Cellular Uptake and Intracellular Transport
5.3 How Do Nanomaterials Interacts with Photosynthetic Pigments?
5.3.1 Chlorophyll and Derivatives
5.3.2 Carotenoids
5.4 Anthocyanins
5.5 Betalains
5.6 Optical and Spectroscopic Behavior of Nanomaterials-Pigment Interaction
5.7 Electrochemical Behavior of Nanomaterials-Pigment Interaction
5.8 Computer Aided Simulation for Understanding Nanomaterials-Pigment Interaction
5.9 Conclusion and Prospects
References
6 Impact of Nanomaterials on Plant Secondary Metabolism
6.1 Introduction
6.2 Plant’s Response to Nanomaterials
6.2.1 Impact of NPs on Precursors of Secondary Metabolism
6.2.2 Impact of NPs on Secondary Metabolism
6.3 Molecular Mechanisms of Nanomaterials-Induced Secondary Metabolic Changes
6.3.1 Reactive Oxygen Species
6.3.2 Calcium Ion Signaling
6.3.3 Phytohormone Signaling
6.3.4 Nitric Oxide (NO) Signaling
6.4 Applications of Nanomaterial-Induced Secondary Metabolic Changes
6.4.1 NPs as Biostimulants
6.4.2 NPs as Elicitors of Phytopharmaceuticals
6.5 Conclusion and Prospects
References
7 Toxic Effects of Nanomaterials on Plant Cellular Mechanisms
7.1 Introduction
7.1.1 NMs Classification
7.2 Uptake Routes of NMs in Plants
7.3 Nanomaterials and Their Toxic Effect on Plants
7.3.1 Toxicity of Metal and Metal Oxide NMs
7.3.2 Toxicity of Carbon-Based NMs
7.4 Altered Enzyme Activity
7.5 Altered Gene Expression
7.6 Proteins Damage
7.7 DNA Damage
7.8 Plant Responses Towards NMs Toxicity
7.8.1 Conclusions and Prospects
References
Part II Cellular Macromolecules
8 Interaction of Nanoparticles with Plant Macromolecules: Carbohydrates and Lipids
8.1 Introduction
8.2 Effects of Nanoparticles on Plant Carbohydrates and Lipids
8.2.1 Silver Nanoparticles
8.2.2 Selenium Nanoparticles
8.2.3 Zinc Oxide Nanoparticles
8.2.4 Copper Oxide Nanoparticles
8.2.5 Magnesium Oxide Nanoparticles
8.2.6 Silicon Dioxide Nanoparticles
8.3 Green Synthesis of Nanoparticles Using Plant Carbohydrates
8.4 Conclusion and Prospects
References
9 Interaction of Nanomaterials with Plant Macromolecules: Nucleic Acid, Proteins and Hormones
9.1 Introduction
9.2 Classification of Nanomaterials
9.3 Major Types of Nanoparticles
9.3.1 Metal Oxide NPs
9.3.2 Nanocarriers and Nanovalves
9.4 Role of Nucleic Acids, Proteins and Hormones in Plants
9.5 Importance of Interaction Between Nanomaterials and Macromolecules
9.6 Interaction of NPs with Nucleic Acids
9.6.1 Interaction of NPs with RNA
9.6.2 Interaction of NPs with DNA
9.7 Interaction of NPs with Proteins
9.7.1 Interaction with Specific Proteins Dealing with Stress
9.7.2 Interaction with Specific Proteins Dealing with Effect on Growth
9.7.3 Applications of NP Interaction with Proteins
9.8 Interaction of NPs with Hormones
9.8.1 Effect on Levels of IAA
9.8.2 Effect on the Levels of Abscisic Acid (ABA)
9.8.3 Interaction with Gibberellins
9.9 Conclusion and Prospects
References
10 Influence of Nanomaterials on Non-enzymatic Antioxidant Defense Activities in Plants
10.1 Introduction
10.2 Antioxidant Defense System in Plants
10.2.1 Plant Stress
10.2.2 Reactive Oxygen Species
10.2.3 Enzymatic and Non-enzymatic Antioxidants
10.2.4 Stress and Antioxidant System
10.3 Nanotechnology and Nanomaterials
10.3.1 Nanomaterials and Non-enzymatic Antioxidant Defense
10.4 Influences of NMs on Non-enzymatic Antioxidants
10.4.1 Impact of NMs on Phenolic Compounds
10.4.2 Impact of NMs on Ascorbic Acid
10.4.3 Impact of NMs on Carotenoids
10.4.4 Impact of NMs on Food Quality and Human Health
10.5 Conclusions and Prospects
References
11 2D-Nanosheets Based Hybrid Nanomaterials Interaction with Plants
11.1 Introduction
11.2 Synthesis of 2D-Nanosheets
11.2.1 Top Up Approach for the Synthesis of 2D-Nanosheets
11.2.2 Mechanical Exfoliation of 2D-Nanosheet
11.2.3 Bottom-Up Method for Synthesis of 2D-Nanosheet
11.3 Interaction of 2D-Nanosheets with Plants
11.4 2D-Nanosheets for Plant Growth
11.5 2D-Nanosheets Based Hybrid Materials for Plant Growth and Protection
11.6 Conclusion and Prospects
References
Part III Agricultural Implications
12 Nanomaterial Impact on Plant Morphology, Physiology and Productivity
12.1 Introduction
12.2 Mechanism of NPs Interaction in Seed
12.3 Effect of NPs on Seed Germination and Root Growth
12.3.1 Carbon-Based NPs
12.3.2 Titanium Dioxide NPs
12.3.3 Silver NPs
12.3.4 Zinc Oxide NPs
12.3.5 Copper Oxide NPs
12.3.6 Iron Oxide NPs
12.3.7 Silica NPs
12.3.8 Cerium Dioxide NPs
12.3.9 Aluminum Oxide NPs
12.3.10 Selenium NPs
12.3.11 Gold NPs
12.4 Effect of NPs on Shoots
12.5 Effect of NPs on Leaves
12.6 Effect of NPs on Flowers
12.7 Effect of NPs on Fruits
12.8 Conclusion and Prospects
References
13 Role of Nanomaterials in Improving Crop Productivity
13.1 Introduction
13.2 Features of NM to Improve Crop Productivity
13.3 Impact of NPs on Crop Quality
13.4 Impact of NPs on Crop Quantity
13.5 Conclusion and Prospects
References
14 Role of Nanomaterials in Plant Cell and Tissue Culture
14.1 Introduction
14.2 Impact of Nanomaterials on Callus Induction
14.3 Mechanism of Improvement of Secondary Metabolism by Nanoparticles
14.4 Mechanisms of Nanoparticles Affecting Callus
14.4.1 Impact of Nanoparticles on Quantitative and Qualitative Features of Calli
14.5 Some Important Applications of Nanomaterials in PTC
14.5.1 Somaclonal Variation
14.5.2 Organogenesis
14.5.3 Somatic Embryogenesis
14.5.4 Disinfection
14.5.5 Genetic Fidelity and Regeneration
14.6 Conclusions and Prospects
References
15 Role of Nanomaterials in Improving the Nutritional Value of Crops
15.1 Introduction
15.2 Nanomaterials Principles
15.2.1 Nanomaterials Definition
15.2.2 Nanomaterials Synthesis
15.2.3 Top-Down Method
15.2.4 Bottom-Up Method
15.3 Classification of Nanomaterials
15.4 Types of Nanomaterials
15.5 Use of Nanotechnology in Agriculture
15.6 Nanomaterials and Nutritional Value of Crops
15.6.1 Role of Nanomaterials in the Carbohydrate Content
15.6.2 Role of Nanomaterials in the Protein Content
15.6.3 Role of Nanomaterials in the Mineral Elements
15.6.4 Role of Nanomaterials in the Antioxidant Capacity
15.6.5 Role of Nanomaterials in the Fatty Acids Contents
15.7 Role of Nano-Encapsulation Technology in Improving the Nutritional Values of the Product
15.8 Conclusion and Prospects
References
16 Role of Nanomaterials in Improving Crop Tolerance to Abiotic Stress
16.1 Introduction
16.2 Morpho-Physiological Impact of Nanomaterials on Plant
16.2.1 Alumina Nanoparticles
16.2.2 Carbon Nanoparticles
16.2.3 Cerium Oxide Nanoparticles
16.2.4 Copper Nanoparticles
16.2.5 Iron Oxide Nanoparticles
16.2.6 Silicon Nanoparticles
16.2.7 Silver Nanoparticles
16.2.8 Titanium Oxide Nanoparticles
16.2.9 Zinc Oxide Nanoparticles
16.2.10 Miscellaneous
16.3 Nanomaterials Response Against Abiotic Stresses
16.3.1 Drought
16.3.2 Heavy Metal Stress
16.3.3 Salinity
16.3.4 Miscellaneous
16.4 Conclusion and Prospects
References
17 Plant Mediation to Tolerate Cadmium Stress with Selenium and Nano-Selenium
17.1 Introduction
17.1.1 Cadmium and Health Effects
17.1.2 Selenium in Soil and Plants
17.1.3 Se Interactions with Cadmium in Plants
17.1.4 Selenium Roles to Mitigate Cadmium Toxicity
17.1.5 Mechanisms of Selenium Strategies Towards in Cadmium Toxicity
17.1.6 Optimal Dosages of Selenium Reduce the Levels of ROS
17.1.7 Conclusion and Prospects
References
18 Synthesis and Applications of Cellulose Nanomaterials Derived from Agricultural Waste and Byproducts
18.1 Introduction
18.2 Source of Cellulose
18.2.1 Cellulose Derived from Traditional Sources
18.3 Structure of Cellulose
18.3.1 Cellulose Chemical Structure
18.3.2 Cellulose Physical Structure
18.4 Nomenclature and Types of Nanocellulose
18.5 Methods of Preparation of Nanocellulose
18.6 Characterization and Properties of Nanocellulose
18.7 Applications of Nanocellulose
18.7.1 Nanocellulose and Conductive Polymers
18.7.2 Application of Nanocellulose
18.7.3 Industrial Application of Nanocellulose
18.8 Conclusions and Prospects
References
Index