Nanofibers and nanotechnology in textiles

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Written by a panel of experts drawn form industry and academia, this book reviews the impact of nanotechnology on the development of a new generation of textile fibers with enhanced functionality and a wide range of applications. It explores nanofiber production, discussing how different fiber types can be produced using electrospinning techniques. The book analyses the production and properties of carbon nanotubes and polymer nanocomposites and their applications in such areas as aerospace engineering. It covers ways of using nanotechnology to improve polymer properties such as thermal stability and dyeability and the use of nanotechnology to modify textile surfaces.

Author(s): P. Brown, K. Stevens
Series: Woodhead Publishing Series in Textiles
Publisher: Woodhead Publishing, in association with The Textile Institute
Year: 2007

Language: English
Pages: 498
City: Cambridge

Nanofibers and nanotechnology in textiles......Page 1
The Textile Institute and Woodhead Publishing......Page 2
Contents......Page 5
Contributor contact details......Page 12
Part I Nanofiber production......Page 16
Contents......Page 0
1.2 Principles of electrostatic atomization......Page 17
1.3.1 Operating modes......Page 19
1.3.2 Output limitations and recent developments......Page 23
1.3.3 Viscosity limitations and recent developments......Page 25
1.4.1 Principle of operation......Page 26
1.4.2 Operating regimes and limits......Page 27
1.4.3 Strategies for further development......Page 33
1.5 References......Page 34
2.1.1 Tissue engineering concept......Page 36
2.1.2 Scaffolds for tissue engineering......Page 38
2.1.3 Scaffold fabrication and electrospinning procedure......Page 41
2.2.1 Polymeric nanofibers......Page 42
2.2.2 Protein nanofibers......Page 43
2.3.1 Porosity and pore size distribution......Page 44
2.3.2 Morphology and fiber diameter distribution......Page 45
2.3.3 Tensile properties......Page 47
2.4 Cell - scaffold interaction......Page 50
2.4.1 Co- electrospinning effect......Page 51
2.4.2 Size effect......Page 53
2.4.3 Architecture effect......Page 55
2.5 Summary and conclusion......Page 56
2.7 References......Page 57
3.2 Using electrospun nanofibers: background and terminology......Page 59
3.3 Controlling fiber orientation......Page 62
3.4 Producing noncontinuous or short yarns......Page 63
3.4.1 Rotating collector method......Page 64
3.4.2 Gap alignment method......Page 65
3.5 Producing continuous yarns......Page 66
3.5.1 Rotating dual- collector yarn......Page 68
3.5.3 Core- spun yarn......Page 69
3.5.6 Self- assembled yarn......Page 70
3.5.8 Spin- bath collector yarn......Page 72
3.5.10 Grooved belt collector yarn......Page 74
3.5.12 Gap-separated rotating rod yarn......Page 76
3.5.13 Conjugate electrospinning yarn......Page 78
3.6 Summary and future trends......Page 80
3.7 Sources of further information and advice......Page 81
3.8 References......Page 82
4.2 The electrospinning process......Page 85
4.3 Properties of electrospun nanofibers......Page 87
4.4.1 Viscosity of nylon 6,6 polymer solutions......Page 89
4.4.3 Web morphology......Page 90
4.5 Improving the properties of electrospun nanofibers: experimental results......Page 91
4.5.1 Viscosity of nylon 6,6 solutions......Page 94
4.5.2 Diameter distribution of nylon 6,6 electrospun webs......Page 95
4.6 Conclusions......Page 99
4.7 References......Page 101
5.1 Introduction......Page 104
5.2 The electrospinning process and fibre morphology......Page 105
5.3 Polymer concentration and fibre diameter......Page 107
5.4 Fibre bead formation and fibre surface morphology......Page 110
5.4.1 Surface morphology......Page 112
5.5.1 Fibre orientation......Page 114
5.5.3 Web structure......Page 116
5.6 Bicomponent cross- sectional nanofibres......Page 117
5.6.1 'Core-sheath' nanofibres and hollow nanofibres......Page 119
5.6.2 'Side-by-side' nanofibres and sharp-edged crosssectional nanofibres......Page 120
5.7 Future trends......Page 121
5.9 References......Page 122
Part II Carbon nanotubes and nanocomposites......Page 125
6.1 Introduction......Page 126
6.2 The development and structure of carbon nanotubes1-64......Page 128
6.2.1 The structure of carbon nanotubes65......Page 131
6.3 Synthesis of carbon nanotubes......Page 137
6.3.1 Arc discharge1-14......Page 139
6.3.2 Laser ablation15-24......Page 145
6.3.3 Chemical vapor deposition2539......Page 148
6.4 Characterization techniques1,......Page 153
6.4.2 Optical laser microscopy......Page 157
6.4.5 Energy Dispersion X- ray ( EDX)......Page 159
6.4.7 Raman spectroscopy......Page 162
6.5 Purification techniques40......Page 165
6.5.2 Chemical etching......Page 166
6.5.3 Selective oxidation......Page 167
6.6 The use of carbon nanotubes in aerospace engineering50-66, 92, 93......Page 170
6.7 Nanostructured composite materials for aerospace applications50-64, 92-127......Page 175
6.8 Nanostructured solid propellants for rockets61,76-79......Page 183
6.9 Frequency selective surfaces for aerospace applications64,128-137......Page 188
6.10 Other aerospace applications of carbon nanotubes65, 66, 138......Page 195
6.12 Acknowledgments......Page 197
6.13 References......Page 198
7.1 Introduction......Page 207
7.2 Synthesis and properties of carbon nanotubes......Page 210
7.2.1 Mechanical properties......Page 211
7.2.2 Transport properties......Page 212
7.2.3 Physical properties......Page 213
7.3.1 Nanotube dispersion......Page 214
7.3.2 Mechanical properties of nanotube/nanofibreÒ polymer composites......Page 216
7.3.3 Physical properties of nanotube/nanofibreÒpolymer composites......Page 218
7.4 Adding nanotubes and nanofibres to polymer fibres......Page 219
7.4.1 Solution spinning......Page 220
7.5 Analysing the rheological properties of nanotube/ nanofibre Ò polymer composites......Page 221
7.5.1 Shear properties......Page 222
7.5.2 Elongational properties......Page 223
7.6 Analysing the microstructure of nanotube/ nanofibre Ò polymer composites......Page 225
7.6.1 Matrix microstructure......Page 227
7.7 Mechanical, electrical and other properties of nanocomposite fibres......Page 229
7.7.1 Electrical properties......Page 232
7.7.2 Other properties......Page 233
7.8 Future trends......Page 234
7.9 References......Page 235
8.1 Introduction......Page 248
8.2 Producing carbon nanotube- polymer fibers......Page 249
8.3 Thermal characterization......Page 250
8.4.1 Transmission electron microscopy......Page 251
8.4.2 Scanning electron microscopy......Page 253
8.4.3 Wide- angle X- ray diffraction......Page 254
8.5 Mechanical properties of fibers......Page 258
8.5.1 Dynamic mechanical analysis......Page 261
8.6 Conclusions and future trends......Page 264
8.8 Acknowledgments......Page 265
8.9 References......Page 266
9.1 Introduction......Page 269
9.2 The development of functional polymer nanocomposites......Page 270
9.3 Improving the mechanical properties of polymer nanocomposites......Page 271
9.4 Improving the fire- retardant properties of polymer nanocomposites......Page 273
9.5 Improving the tribological properties of polymer nanocomposites......Page 275
9.6.1 Materials investigated......Page 278
9.6.2 Wear tests......Page 280
9.6.3 Friction coefficient measurements......Page 281
9.6.4 Wear......Page 284
9.7 Enhancing the functionality of polymer nanocomposites......Page 286
9.10 References......Page 288
10.1 Introduction......Page 294
10.2 Polymer layered silicate nanocomposites......Page 295
10.2.1 Preparation of layered silicate polypropylene nanocomposites......Page 296
10.3 The structure and properties of layered silicate polypropylene nanocomposites......Page 297
10.3.1 Preparation techniques and nanocomposite structure......Page 299
10.3.2 Properties of layered silicate polypropylene nanocomposites......Page 300
10.4 Nanosilica filled polypropylene nanocomposites......Page 302
10.5.1 Carbon black-filled polypropylene composites......Page 304
10.5.3 Polypropylene-polyhedral oligomeric silsesquioxane nanocomposites......Page 305
10.7 References......Page 306
Part III Improving polymer functionality......Page 312
11.1 Introduction......Page 313
11.2 Formation and characterization of polymer- cyclodextrin - inclusion compounds......Page 314
11.2.1 Coalescence of guest polymers from their cyclodextrin Ò inclusion compounds......Page 315
11.3.1 Electrostatic interactions......Page 316
11.3.5 Relief of conformational strain in cyclodextrins......Page 317
11.3.7 Crystalline packing of host cyclodextrins in solid cyclodextrin Ò inclusion compounds......Page 318
11.3.8 Nano-threading of polymers into solid cyclodextrins......Page 319
11.4 Homo- and block copolymers coalesced from their cyclodextrin Ò inclusion compounds......Page 320
11.4.1 PCL-b-PLLA di-block copolymer......Page 321
11.5 Constrained polymerization in monomerÒ cyclodextrin Ò inclusion compounds......Page 322
11.6 Coalescence of common polymer-cyclodextrin- inclusion compounds to achieve fine polymer blends......Page 323
11.7 Temporal and thermal stabilities of polymers nanostructured with cyclodextrins......Page 324
11.8 Cyclodextrin-modified polymers......Page 325
11.9 Polymers with covalently bonded cyclodextrins......Page 326
11.11 References......Page 328
13.1 Introduction......Page 332
13.1.1 Layered silicate clay minerals......Page 333
13.2.1 Structure and properties of organomodified clays......Page 335
13.3 Polymer/clay nanocomposites......Page 337
In situ polymerization......Page 338
Melt intercalation......Page 339
13.3.2 Compatibilization issues in polyolefin/clay nanocomposites......Page 340
13.4 Polypropylene/clay nanocomposites......Page 341
13.5 Polyethylene/clay nanocomposites......Page 348
13.5.1 Linear low-density polyethylene/clay nanocomposites......Page 349
13.5.2 High-density polyethylene/clay nanocomposites......Page 351
13.5.3 Ultra-high molecular weight polyethylene/clay nanocomposites......Page 352
13.6.1 Poly(4-methyl-1-pentene)/clay nanocomposites......Page 353
13.6.3 Other polyolefin/clay nanocomposites......Page 354
13.7 Conclusions......Page 355
13.8 References......Page 362
14.1 Introduction......Page 367
14.2.3 Synthesis procedure......Page 368
14.3.1 Scanning electron microscopy analysis......Page 369
14.3.3 Tensile testing......Page 371
14.4 Properties of multiwall carbon nanotube Ò nylon- 6 nanocomposite fibers......Page 372
Viscosity effect......Page 373
Differential scanning calorimetry analysis......Page 375
14.4.2 Melting characteristics and crystallization......Page 377
14.4.3 Molecular weight......Page 378
14.4.4 Tensile properties......Page 382
14.5 Conclusions......Page 385
14.6 Acknowledgments......Page 386
14.7 References......Page 387
Part IV Nanocoatings and surface modification techniques......Page 388
15.1 Introduction......Page 389
15.2.1 Electrostatic spinning......Page 390
15.2.2 Polymers and solvents......Page 392
15.2.4 Productivity......Page 394
15.2.5 Centrifuge spinning......Page 395
15.2.6 Comparing technologies......Page 396
15.3 Anti-adhesive nanocoating of fibers and textiles......Page 397
15.4 Water- and oil-repellent coatings by plasma treatment......Page 398
15.4.1 Aerosol and spraying applications......Page 400
15.5.1 Principles......Page 401
15.5.2 Transfer to fiber-based products......Page 402
15.5.3 Testing methods......Page 405
15.5.4 The Denkendorf quality mark......Page 406
15.7 References......Page 407
16.2 Principles of electrostatic self-assembly for creating nanolayer films......Page 408
16.2.1 Deposition conditions......Page 410
16.3 Advantages and disadvantages of electrostatic self- assembly......Page 411
16.4.1 Influence of substrate characteristics......Page 412
16.4.2 Polymers as substrates for layer-by-layer deposition......Page 413
16.5.1 Synthetic polyelectrolytes......Page 414
16.5.2 Modified and natural polyelectrolytes......Page 415
16.6 Analyzing self-assembled nanolayer films on cotton......Page 416
16.7 Conclusions: functional textiles for protection, filtration and other applications......Page 419
16.8 References......Page 420
17.1 Introduction......Page 428
17.2 Macromolecular platform for nanofabrication......Page 429
17.3.1 Synthesis of macroinitiator......Page 431
17.3.2 Atom transfer radical polymerization from macroinitiator......Page 433
17.4 'Grafting to' technique for synthesis of polymer films......Page 435
17.5.1 Mixed polymer brushes......Page 438
17.5.2 Switchable unary polymer brush......Page 442
17.6 Synthesis of ultrahydrophobic materials......Page 444
17.6.1 Fabrication of ultrahydrophobic textile materials......Page 445
17.8 Acknowledgments......Page 446
17.9 References......Page 447
18.1 Introduction: smart textiles via thin hybrid films......Page 450
18.2.1 Responsiveness of polymer chains to their environment......Page 451
18.2.2 Polymer brushes......Page 453
18.2.3 Mixed polymer brushes......Page 455
18.2.4 Block-copolymer brushes......Page 457
18.3 Polymer-polymer hybrid layers......Page 458
18.4 Polymer-particles hybrid layers......Page 464
18.5 Hierarchical assembly of nanostructured hybrid films......Page 465
18.6 Future trends......Page 469
18.9 References......Page 470
19.1 Introduction......Page 473
19.2 Materials, processing and characterisation techniques......Page 475
19.3 Structure and morphology......Page 477
19.3.1 Morphology......Page 480
19.4 Phase homogeneity and spinline stability......Page 482
19.5 Optical birefringence and infrared activation......Page 485
19.5.1 Infrared activation......Page 487
19.6 Crystallisation behaviour and mechanical performance......Page 489
19.6.1 Mechanical performance......Page 491
19.7 Exfoliation by extensional flow deformation......Page 493
19.8 Conclusions......Page 494
19.9 References......Page 495