Materials development has reached a point where it is difficult for a single material to satisfy the needs of sophisticated applications in the modern world. Nanocomposite films and coatings achieve much more than the simple addition of the constitutents the law of summation fails to work in the nano-world. This book encompasses three major parts of the development of nanocomposite films and coatings: the first focuses on processing and properties, the second concentrates on mechanical performance, and the third deals with functional performance, including wide application areas ranging from mechanical cutting to solar energy and from electronics to medicine.
Author(s): Sam Zhang, Nasar Ali, Sam Zhang, Nasar Ali
Publisher: Imperial College Press
Year: 2007
Language: English
Pages: 628
City: London
Tags: Специальные дисциплины;Наноматериалы и нанотехнологии;Наноматериаловедение;Нанокомпозиты;
CONTENTS......Page 6
1. Introduction......Page 14
2.1. Design of Microstructure......Page 16
2.2. Synthesis of Thin Films......Page 20
3.1. Composition......Page 24
3.2. Topography......Page 26
3.3. Microstructure......Page 28
3.4.1. Hardness......Page 30
3.4.2. Toughness......Page 33
3.4.4. Adhesion......Page 36
4.1. Nanocrystalline TiN Embedded in Amorphous SiNx or nc-TiN/a-SiNx......Page 37
4.1.1.1. Quantitative Compositional Analysis......Page 38
4.1.1.2. Effect of Deposition Conditions......Page 44
4.1.2. Topography......Page 46
4.1.3. Microstructure......Page 51
4.1.3.1. Crystal Phase and Amorphous Matrix......Page 52
4.1.3.2. Grain Size and Distribution......Page 55
4.1.3.3. Preferential Orientation......Page 59
4.1.3.4. Lattice Parameter......Page 62
4.1.4. Mechanical Properties......Page 63
4.1.4.1. Residual Stress......Page 64
4.1.4.2.2. E.ect of Indentation Depth......Page 67
4.1.4.2.4. E.ect of Grain Size and Crystallite Fraction......Page 69
4.1.4.2.5. Relationship Between Hardness and Young’s Modulus......Page 71
4.1.4.3 Toughness......Page 73
4.1.4.4 Adhesion......Page 75
4.1.5. Summary......Page 78
4.2. Ni-Toughened nc-TiN/a-SiNx......Page 80
4.2.1. Composition......Page 81
4.2.1.1 Quantitative Compositional Analysis......Page 82
4.2.1.2 Effect of Deposition Conditions......Page 83
4.2.2. Topography......Page 85
4.2.3.2 Grain Size and Distribution......Page 90
4.2.3.4. Lattice Parameter......Page 94
4.2.4.2. Hardness......Page 98
4.2.4.3. Toughness......Page 100
4.2.5.1. Oxidation Variation with Depth......Page 101
4.2.5.2. Oxidation Variation with Temperature......Page 108
4.2.5.3. Discussions......Page 111
4.2.6. Summary......Page 112
Symbols......Page 114
Abbreviations......Page 116
References......Page 117
1. Al-doped Amorphous Carbon: a-C(Al)......Page 124
1.1. Composition and Microstructure......Page 125
1.2. Mechanical Properties......Page 130
2.1. Composition......Page 133
2.2. Topography......Page 135
2.3. Microstructure......Page 137
2.4.1. Hardness and Residual Stress......Page 143
2.4.2. Tribology......Page 146
3. Al-Toughened nc-TiC/a-C......Page 147
3.2. Microstructure......Page 148
3.3.1. Hardness, Toughness and Adhesion......Page 151
3.3.2. Tribology......Page 156
3.3.2.1. Dry Tribology......Page 157
3.3.2.2. Oil-Lubricated Tribology......Page 160
3.4. Thermal Stability and Oxidation Resistance......Page 163
3.5. Application in Piston Ring......Page 169
3.5.3. Testing Procedure......Page 170
3.5.4. Results......Page 172
3.6. Summary......Page 174
References......Page 177
1. Introduction......Page 180
2. Chemical Vapor Deposition......Page 183
3. NCD Film Formation from Hydrogen-Deficient Plasma......Page 189
4. NCD Films Formation from Hydrogen-Rich Plasma......Page 196
5. Nanocomposite Film......Page 199
6. Mechanical Behavior of NCD Films......Page 202
7. Field Emission Characteristics......Page 206
8. Conclusions......Page 214
References......Page 215
1.1. History of Diamond......Page 220
1.2. Structure of Diamond......Page 221
1.3. Properties of Diamond......Page 222
1.4. Chemical Vapor Deposition (CVD)......Page 223
1.5. Growth Mechanisms of Microcrystalline Diamond (MCD) Films......Page 228
1.6. Growth Mechanisms of Nanocrystalline Diamond (NCD) Films......Page 230
2.1. Scanning Electron Microscopy (SEM)......Page 233
2.2. Transmission Electron Microscopy (TEM)......Page 237
2.3. Raman Spectroscopy......Page 240
2.4. Near Edge X-Ray Absorption Fine Structure (NEXAFS)......Page 244
2.6. Characterization of Mechanical Properties of NCD......Page 247
2.7. Electron Energy Loss Spectroscopy (EELS)......Page 251
2.8. Characterization of Electrical Properties of Doped NCD Films......Page 252
3.1. MEMS/NEMS Applications of NCD Films......Page 257
3.1.1. Fabrication of NCD MEMS/NEMS Devices......Page 258
3.1.2. NCD Cantilever......Page 259
3.1.3. SAW Devices......Page 260
3.1.4. NCD RF MEMS Devices......Page 262
3.2.1. History of the Electrochemistry of Diamond Films......Page 264
3.2.2. Basic Diamond Properties in Electrochemistry......Page 265
3.2.3. Basic Principles of Electrochemical Measurements......Page 266
3.2.4. Electrochemical Properties of NCD......Page 267
3.2.5. Electroanalytical Applications......Page 271
3.3. Biomedical Applications of NCD Films......Page 273
3.4. Field Emission Devices......Page 279
3.5. Other Applications of NCD Films......Page 284
4. Conclusions......Page 286
References......Page 287
2. Present State of Knowledge......Page 294
3.1. Origin of Enhanced Hardness......Page 295
3.3.1. Transition Region from Crystalline to Amorphous Phase......Page 296
3.3.2. Transition Between Two Preferred Crystallographic Orientations of Grains or Two Crystalline Phases......Page 298
3.3.3. FE-TEM of Cross-Section of Nanocomposite Films Based on Nitrides......Page 300
3.4. Microstructure of Nanocomposites with Enhanced Hardness......Page 302
3.5. New Advanced Materials Composed of Nanocolumns......Page 303
4. Mechanical Properties of Nanocomposite Coatings......Page 304
5.1. Thermal Stability of Film Properties......Page 306
5.2. Si3N4/MeNx Composites with High (50 vol.%) of a-Si3N4 Phase......Page 307
5.2.1. Film Preparation and Measurement of Their Oxidation Resistance......Page 308
5.2.2. Elemental and Phase Composition......Page 309
5.4.1. Crystallization of Amorphous Zr–Si–N Film on Si(100) Substrate......Page 312
5.4.2. Crystallization of Amorphous Zr–Si–N Films Separated from Substrate in Flowing Argon......Page 316
5.5.1. SEM Cross-Section Images of Amorphous Me–Si–N Films After Thermal Annealing in Flowing Air......Page 319
5.6. Summary of Main Issues......Page 321
6.1. Toughening Mechanisms......Page 323
6.2. Fracture Toughness of Bulk Materials and Thin Films......Page 324
6.4. Formation of Cracks......Page 326
6.4.1. Effect of Substrate......Page 327
6.4.3. Effect of Residual Stress in Film......Page 328
6.4.4. Effect of Film Thickness......Page 329
6.5. Assessment of Toughness of Thin Films......Page 330
6.5.1. Cracking of Hard Films with Ef ≤ E......Page 331
6.5.2. Cracking of Hard Films with Ef > Es......Page 332
6.6. Summary of Main Issues......Page 334
7. Future Trends......Page 335
References......Page 336
1. Introduction......Page 342
2.1. Nanoscale Multilayer Coatings......Page 343
2.3. Functionally Graded Coatings......Page 345
3. Background of Nanostructured Superhard Coatings......Page 350
3.1. Nanoscale Multilayer Coatings......Page 352
3.2. Single Layer Nanocomposite Coatings......Page 354
4. New Directions for Nanostructured Supertough Coatings......Page 355
4.1. Functionally Graded Multilayer Coatings......Page 356
4.2. Functionally Graded Nanocomposite Coatings......Page 358
5. Other Possible Properties of Nanostructured Coatings......Page 359
6.1. Hybrid Coating System of Cathodic Arc Ion Evaporation (CAE) and Magnetron Sputtering (MS)......Page 360
6.2. Pulsed Closed-Field Magnetron Sputtering (P-CFUBMS)......Page 361
6.3. High-Power Pulsed DC Magnetron Sputtering (HPPMS)......Page 366
7.1. Hybrid Coating System of Ti–Al–Si–N Coatings......Page 367
7.2. Unbalanced Magnetron Sputtering of Ti–Si–B–C–N Coatings......Page 370
7.3.1. Characterization of Ion Energy and Ion Flux Change in the P-CFUBMS......Page 376
7.3.2. Microstructure and Properties of Cr–Al–N Coatings......Page 381
7.3.3. Properties of Cr–Al–N Coatings......Page 383
8. Concluding Remarks......Page 388
References......Page 389
2.1. Solar Thermal Energy Conversion Thin Films......Page 394
2.2. Theories of Nanocomposite and Nanoparticles in Solar Thermal Energy Conversion......Page 397
2.3. Complications in Nanocomposite Thin Film Materials in Solar Thermal Selective Surfaces: The Effects of Particle Size, Shape, and Orientation......Page 403
3.1. Photovoltaic Solar Electricity Generation......Page 408
3.2.1. Hydrogenated Nanocrystalline Silicon Solar Cells......Page 411
3.2.2. Other Nanocomposite Thin Film Solar Cells......Page 418
3.3. Dye-Sensitized Solar Cells......Page 420
3.4. Hot-Carrier Junction Nanocomposite Solar Cells......Page 423
References......Page 427
1. Introduction......Page 432
2. Conventional Floating Gate Non-VolatileMemory Devices......Page 433
3.1. Device Structure......Page 437
3.2. Operation Mechanisms......Page 438
3.2.1. Programming Operation......Page 439
3.2.2. Erasing Operation......Page 440
3.2.3. Reading Operation......Page 441
4.1. Synthesis of Si Nanocrystal......Page 442
4.1.1. CVD......Page 443
4.1.2. Ion Implantation......Page 445
4.2. Properties of Si Nanocrystal......Page 446
5.1. Memory Characteristics......Page 456
5.2.1. Effect of Tunneling Oxide Thickness......Page 462
5.2.2. Effect of Programming Mechanism......Page 468
6. Single-Electron Memory Effect......Page 475
7. Summary......Page 479
References......Page 480
1. Introduction......Page 486
2.1. Deposition Techniques......Page 487
2.1.1. Radio Frequency-Plasma Enhanced Chemical Vapor Deposition (RF-PECVD)......Page 488
2.1.2. Very High Frequency-Plasma Enhanced Chemical Vapor Deposition (VHF-PECVD)......Page 489
2.1.4. Electron Cyclotron Resonance CVD (ECR-CVD)......Page 491
2.2. Growth Models......Page 492
2.2.2. Chemical Annealing (Subsurface Transformation)......Page 493
2.2.3. Surface Diffusion (Hydrogen Radical Coverage)......Page 494
3.1.1. Dark and Photoconductivity......Page 495
3.2.1. Bandgap......Page 497
3.2.2. Hydrogen Concentrations......Page 499
3.2.3. Crystalinity from Raman Spectroscopy......Page 500
3.2.4. Crystalline Structure from XRD......Page 502
3.2.5. Luminescence......Page 503
3.3. Stress Issues in Nanocrystalline Si Films......Page 504
4.1. Thin Film Transistors (TFTs)......Page 508
4.1.1. Fabrication......Page 509
4.1.3. Stability......Page 510
4.2. Solar Cells......Page 512
4.2.1. Fabrication......Page 513
4.2.2. Operation......Page 514
4.2.3. Photodegradation......Page 515
4.3. Light Emitting Diodes......Page 517
References......Page 519
1. Introduction......Page 526
2.1. Electronic Structure......Page 528
2.2. Plasma-Based Deposition Methods......Page 530
2.3. Characterization......Page 535
2.4. Doping DLC......Page 541
2.5. Thermal Annealing......Page 543
2.6. Biological Properties and Biocompatibility......Page 545
2.7. Biomedical Applications......Page 549
3. Surface Energy of Diamond-Like Carbons......Page 551
4. Electrical Conductivity and Conduction Mechanisms......Page 555
5. Work Function/Contact Potential Difference......Page 558
6.3. Non-Adhesive/Adhesive Protein Ratios......Page 562
7. Endothelial Cell Interactions with Diamond-Like Surfaces......Page 563
7.1. Silicon-Doped Diamond-Like Carbon Nanocomposite Films......Page 565
7.2. Chromium-Doped Diamond-Like Carbon Nanocomposite Films......Page 569
References......Page 574
1.1. Clinical Background......Page 586
1.2. Biomimetic Nanoscale Biomaterials......Page 587
2.1. Concept of Biocompatibility......Page 588
2.2. Classification of Biomaterial Implants......Page 589
2.3. Osteogenesis Around Bone Implants......Page 590
2.4. Materials for Orthopaedic and Dental Use......Page 591
3. Bone Structure and Formation......Page 594
3.1. Bone and Cells......Page 595
3.2.1. Endochondral Ossification......Page 597
3.3. Bone Properties......Page 598
3.4. Bone Remodeling......Page 600
4. Bone Healing Around Implants......Page 601
5.1. Bioactive Material Coatings......Page 605
5.2. Hydroxyapatite-Coated Implants......Page 606
5.3. Biomimetic Coatings on Titanium-Based Implants......Page 608
5.4. Hybrid Coatings with Nanomaterials......Page 611
6. Conclusion and Future Work......Page 612
References......Page 614
Index......Page 620