Content: Introduction / Vivek Polshettiwar --
Nanocatalysts for the Heck Coupling Reactions / Tewodros Asefa --
Nanocatalysts for the Suzuki Coupling Reactions / Liane M. Rossi --
Sonogashira Reactions Using Nano-Catalysts / Carmen Najera --
Nanocatalysts for Hiyama, Stille, Kumuda and Nigeshi C-C Coupling Reactions / Robert W.J. Scott --
Nanocatalysts for Rearrangement Reactions / Victorio Cadierno --
Oxidation of Alcohols Using Nano-Catalysts / Kiyotomi Kaneda --
Tuning the Morphology of Metal Oxides for Catalytic Applications / Wenjie Shen --
Nanocatalysts for Hydrogenation Reactions / Radha Narayanan --
Hydrogenolysis Reactions using Nanocatalysts / Vivek Polshettiwar --
Nanomaterials Based Photocatalysts / Deepa Khushalani --
Nanocatalysts for Water Splitting / Lianzhou Wang --
Properties of Nano-Catalytic Materials for Hydrogen Production from Renewable Resources / Xianqin Wang --
Nano-Catalysts for Biofuels / Vitaliy Budarin --
Nano-Material Based Bio-Catalyst / Jin Hyung Lee --
Role of Nanocatalysis in Chemical Industry / Rajiv Kumar --
Nanocatalysis : Activation of Small Molecules and Conversion into Useful Feedstock / Balaji R. Jagirdar.
Author(s): Vivek Polshettiwar; Tewodros Asefa
Publisher: John Wiley & Sons
Year: 2013
Language: English
Pages: 0
City: Hoboken, New Jersey
Tags: Специальные дисциплины;Наноматериалы и нанотехнологии;Нанохимия;
NANOCATALYSIS......Page 3
CONTENTS......Page 7
FOREWORD......Page 9
PREFACE......Page 11
LIST OF CONTRIBUTORS......Page 15
1 INTRODUCTION TO NANOCATALYSIS......Page 19
WHAT IS NANOCATALYSIS?......Page 20
NANOCATALYSIS: TRUTH OR HYPE?......Page 21
REFERENCES......Page 26
INTRODUCTION......Page 29
HETEROGENEOUS CATALYSTS FOR THE HECK REACTION......Page 30
Homogeneous Catalysts for the Heck Coupling Reaction......Page 31
Heterogeneous Catalysis for the Heck Coupling Reaction......Page 32
Some Commercial Applications of the Heck Reaction......Page 33
Mechanisms of the Heck Coupling Reaction......Page 34
Pd-NPs-Catalyzed Heck Reaction......Page 35
Nanoparticles Composed of Metals Other than Pd for the Heck Coupling Reaction......Page 42
CORE–SHELL NANOPARTICLES FOR THE HECK COUPLING REACTION......Page 43
MESOPOROUS MATERIALS FOR THE HECK COUPLING REACTIONS......Page 45
POLYMERIC-BASED NANOCATALYSTS FOR THE HECK COUPLING REACTIONS......Page 52
CARBON NANOMATERIAL-SUPPORTED HECK COUPLING REACTIONS......Page 57
REFERENCES......Page 59
SUZUKI COUPLING REACTION......Page 69
FROM HOMOGENEOUS TO NANOPARTICLE CATALYSTS......Page 71
Influence of the Preparation Method on the Catalytic Activity......Page 72
Influence of the NP Size on the Catalytic Activity......Page 73
Influence of the NP Shape on the Catalytic Activity......Page 74
Influence of the Support Material on the Catalytic Activity......Page 77
STABILITY AND REUSABILITY OF NANOCATALYSTS......Page 80
INSIGHT ON MECHANISTIC ASPECTS......Page 82
Palladium Nanocatalysts......Page 85
Other Metals and Bimetallic Nanocatalysts......Page 93
SUMMARY AND FUTURE OUTLOOK......Page 94
Representative Procedures in Terms of Reusability......Page 96
Representative Procedures in Terms of Chloroarene Activation......Page 97
Representative Procedure in Terms of Green Synthesis......Page 98
REFERENCES......Page 99
INTRODUCTION......Page 107
CATALYTIC ACTIVITY, STABILITY, AND REUSABILITY......Page 108
Unimmobilized Palladium Nanocatalysts from Palladium Complexes......Page 109
Unimmobilized Palladium Nanocatalysts from Ligand-Free Palladium Compounds......Page 111
Immobilized Palladium Nanocatalysts......Page 114
Other Metal-Based Nanoparticles as Catalysts......Page 131
MECHANISTIC ASPECTS......Page 134
SUMMARY AND FUTURE OUTLOOK......Page 137
Sonogashira Reaction Catalyzed by Unimmobilized Pd-NPs from a Ligand-Free Palladium Salt48......Page 138
Sonogashira Reaction Catalyzed by Pd-NPs Immobilized on Carbon88......Page 139
REFERENCES......Page 140
INTRODUCTION......Page 151
Synthesis......Page 154
Characterization of Catalytic Metal Nanoparticles......Page 161
HIYAMA COUPLING......Page 164
NEGISHI COUPLING......Page 171
STILLE COUPLING......Page 175
KUMADA–CORRIU COUPLING......Page 185
MECHANISMS......Page 189
OUTLOOK......Page 192
REFERENCES......Page 193
INTRODUCTION......Page 207
METAL NANOPARTICLE-CATALYZED ARYL–SULFUR BOND FORMATION......Page 209
METAL NANOPARTICLE-CATALYZED ARYL–NITROGEN BOND FORMATION......Page 214
METAL NANOPARTICLE-CATALYZED ARYL–OXYGEN BOND FORMATION......Page 218
METAL NANOPARTICLE-CATALYZED ARYL–SELENIUM BOND FORMATION......Page 222
MISCELLANEOUS C N BOND FORMATION REACTIONS CATALYZED BY METAL NANOPARTICLES......Page 227
REFERENCES......Page 233
INTRODUCTION......Page 239
RECENT PROGRESS ON NANOPARTICLE-BASED HETEROGENEOUS CATALYSTS FOR THE ALDOL, KNOEVENAGEL, AND HENRY REACTIONS......Page 242
MESOPOROUS SILICA-SUPPORTED CATALYSTS FOR THE ALDOL, HENRY, AND KNOEVENAGEL REACTIONS......Page 243
Henry Reaction......Page 245
Asymmetric Henry Reaction......Page 250
Aldol Condensation......Page 252
Mesoporous Silica-Supported Proline Catalyst for Asymmetric Aldol Condensation......Page 253
Knoevenagel Condensation......Page 255
POLYMERIC-BASED NANOCATALYSTS FOR THE HENRY COUPLING REACTIONS......Page 260
REFERENCES......Page 262
INTRODUCTION......Page 269
Synthesis of the Nanocatalysts......Page 270
Techniques Employed for the Characterization of the Nanocatalysts......Page 271
Olefin Isomerization Processes......Page 272
Cycloisomerizations and Related Cyclization Processes......Page 276
Other Rearrangements......Page 280
INSIGHT ON MECHANISTIC ASPECTS......Page 284
SUMMARY AND FUTURE OUTLOOK......Page 288
cis-to-trans-Isomerization of But-2-Ene Catalyzed by Tetrahedral and Cubic Pt-NPs Dispersed onto a High-Surface-Area Silica Xerogel Support30–32......Page 289
Isomerization of Cyclohexene into Methylcyclopentene Catalyzed by Bimetallic Pt–Pd-NPs Supported on TiO2 68......Page 290
Redox Isomerization of Allylic Alcohols Catalyzed by the Nanoferrite-Supported RAPTA Complex 126......Page 291
Cycloisomerization of N,N-diallylamides and N,N-Diallylsulfonamides Catalyzed by Pd-NPs93......Page 292
Beckmann Rearrangement of Ketoximes Using Tungstated Zirconia Solid Acid Nanocatalysts130,131......Page 293
REFERENCES......Page 294
INTRODUCTION......Page 305
Supported RuOx Species......Page 306
Supported Perruthenate Species......Page 315
Organic Polymer-Supported Ruthenium Catalysts......Page 317
Supported Pd-NPs......Page 318
Supported Pd(II) Species......Page 324
Inorganic Material-Supported Au-NPs......Page 329
Organic Polymer-Supported Au-NPs......Page 334
BIMETALLIC NANOPARTICLE-CATALYZED ALCOHOL OXIDATION......Page 337
SUMMARY AND FUTURE OUTLOOK......Page 340
REFERENCES......Page 341
INTRODUCTION......Page 351
Co3O4-NPs and Cubes......Page 354
Co3O4 Nanorods and Nanotubes......Page 355
Multidimensional Co3O4 Nanostructures......Page 358
Co3O4 Nanocatalysts......Page 361
FERRIC OXIDES......Page 365
α-Fe2O3-NPs......Page 368
α-Fe2O3 Nanorods and Nanotubes......Page 370
Hierarchical α-Fe2O3......Page 374
γ-Fe2O3 Nanomaterials......Page 375
Fe2O3 Nanocatalysts......Page 379
CERIUM DIOXIDE......Page 384
CeO2-NP and Nanocubes......Page 385
CeO2 Nanorods and Nanotubes......Page 387
Multidimensional CeO2 Nanostructures......Page 389
CeO2 Nanocatalysts......Page 392
Au/CeO2 Nanocatalysts......Page 393
CONCLUDING REMARKS......Page 399
REFERENCES......Page 400
INTRODUCTION......Page 423
Hydrogenation of Alkenes......Page 424
Hydrogenation of Alkynes......Page 434
Hydrogenation of Aromatic Compounds......Page 443
CONCLUSIONS......Page 453
REFERENCES......Page 454
Introduction......Page 461
First-Row Transition Metal Catalysts......Page 463
Noble Metal Catalysts......Page 468
Metal Oxide-Modified Supported Noble Metal Catalysts......Page 471
Metal Catalysts Supported on Carbon Nanotubes......Page 473
Introduction......Page 474
Alkane Hydrogenolysis over Transition Metals......Page 475
Biodiesel-Derived Glycerol Hydrogenolysis to 1,2-PD on Cu/MgO Catalysts19......Page 479
Hydrogenolysis of Glycerol over Titania-Supported Ruthenium33......Page 480
REFERENCES......Page 481
INTRODUCTION......Page 487
HISTORICAL PERSPECTIVES IN PHOTOCATALYSIS......Page 489
MECHANISTIC DETAILS......Page 490
USE OF VISIBLE LIGHT......Page 493
Sol–Gel......Page 497
Hydrothermal Synthesis......Page 502
Chemical Vapor Deposition and Atomic Layer Deposition......Page 503
Ion Beam Techniques......Page 504
FUTURE DIRECTIONS......Page 505
REFERENCES......Page 506
INTRODUCTION......Page 513
Principles of Photocatalytic Water Splitting......Page 514
Types of Photocatalytic Water Splitting......Page 519
Photocatalytic Performance Evaluation......Page 523
General Synthesis Method of Semiconductor Photocatalysts......Page 526
Methods of Loading Cocatalyst on Semiconductor Photocatalysts......Page 528
ELEMENTS CONSTRUCTING SEMICONDUCTOR PHOTOCATALYSTS......Page 529
Titanium (Ti)-Based Oxides......Page 530
Niobium (Nb)-Based Oxides......Page 535
Tantalum (Ta)-Based Oxides......Page 537
Other Transition Metal-Based Oxides......Page 541
Main Group Metal Oxides......Page 543
Nonoxide Photocatalysts......Page 544
VISIBLE LIGHT-RESPONSIVE SEMICONDUCTOR NANOCATALYSTS FOR WATER SPLITTING......Page 545
Semiconductors with Suitable Energy Levels for Water Splitting (Type A)......Page 546
Doping Strategies (Type B)......Page 552
Solid Solution Materials (Type C)......Page 558
SUMMARY AND FUTURE PERSPECTIVE......Page 562
REFERENCES......Page 563
INTRODUCTION......Page 579
BIOMASS GASIFICATION......Page 582
Water Gas Shift......Page 583
STEAM REFORMING OF FAST PYROLYSIS BIO-OILS......Page 584
Aqueous-Phase Reforming of Sugars......Page 586
Fermentation of Sugars and Steam Reforming of Ethanol......Page 588
Methane Conversion......Page 589
OVERALL H2 PRODUCTION PROCESS FROM RENEWABLE RESOURCES......Page 590
X-RAY ABSORPTION SPECTROSCOPY......Page 591
Activity......Page 592
Stability......Page 600
CONCLUSIONS......Page 602
REFERENCES......Page 604
Climate Change and Biorefinery Concept......Page 613
Nanocatalysis......Page 615
Biomass Upgrading for Energy Production......Page 616
NANOCATALYSTS IN THE PRODUCTION OF LIQUID FUELS FROM BIOMASS......Page 618
First-Generation Biofuel......Page 619
Second-Generation Biofuels......Page 621
NANOPARTICLES AND THE BIOREFINERY: PROSPECTS AND OUTLOOK......Page 628
REFERENCES......Page 629
INTRODUCTION......Page 633
Synthesis of Nanomaterials for Enzyme Immobilization......Page 634
Methods Used for Binding Enzymes while Constructing Nanomaterial-Based Biocatalysts......Page 640
CATALYTIC ACTIVITY, STABILITY, AND REUSABILITY: ENHANCEMENT OF ENZYME FUNCTIONS VIA NANOMATERIAL-BASED BIOCATALYSTS......Page 643
Stabilization of Biocatalysts......Page 644
Reusability......Page 645
Food Industry......Page 646
Bioenergy and Environmental Technology......Page 648
Preparation of Magnetic Silica Nanoparticle-Based Biocatalyst115......Page 649
Preparation of Nanofiber-Based Biocatalyst116......Page 651
REFERENCES......Page 652
General Background......Page 661
Synthesis of Nanocatalysts......Page 662
General Introduction......Page 663
Colloidal NP Synthesis......Page 664
Pt–Monometal Supported Catalysts......Page 667
Pt-Based Bimetallic Catalysts......Page 670
Preparation of Trimetallic Catalysts......Page 680
Introduction......Page 682
Experimental......Page 684
Results......Page 685
Introduction to “Striped” NPs......Page 687
Linking Ripple Domain to Surface Energy......Page 688
Synthesis of “Striped” NPs......Page 689
Catalytic Applications of “Striped” NPs......Page 690
Conclusions......Page 691
ACKNOWLEDGMENTS......Page 692
REFERENCES......Page 693
INTRODUCTION......Page 697
CO OXIDATION ON AU/METAL OXIDE CATALYSTS......Page 699
Gold Nanoparticles......Page 700
Metal Oxide Supports......Page 702
DIRECT SYNTHESIS OF H2O2 FROM H2 AND O2......Page 705
METHANOL SYNTHESIS FROM CO AND CO2......Page 711
Cu/ZnO Binary Catalysts......Page 712
Cu/ZnO/Al2O3 Ternary Catalysts......Page 718
Quasihomogeneous Catalyst......Page 720
REFERENCES......Page 724
INDEX......Page 731
Supplemental Images......Page 738