Nanobiosensors for Environmental Monitoring: Fundamentals and Application

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book entails detailed information on the utilization of nanobiosensor as an effective technology for the effective detection, monitoring, and management of environmental contaminations to ensure its sustainability and humanity's well-being. The higher level of anthropogenic action has been identified as a threat to humankind's existence due to the higher level of xenobiotic and toxic substances that could interrupt the normal ecosystem. This has prompted numerous agencies both locally and internationally that could play a significant role in environmental pollution mitigation. The application of nanobiosensor has been identified as a sustainable technique that could be applied to ensure proper detection and identification of several environmental contaminants.  Nanomaterial’s possible applications created an innovative domain called nanomaterials based biosensors machinery as one of nanotechnology's ultimate sub-divisions. The application of nanomaterials based biosensors machinery and their advancements could be applied globally to resolve numerous environmental sectors' challenges to guarantee the environment's quality and safety.

The book will be an excellent collection of reviews based on contemporary research and developments on nanomaterials utilization and applications in environmental monitoring along with their prospects. The book will attempt to give a comprehensive idea of nanomaterial concepts for nanobiosensors applications in an environmental context to help students, researchers, and professionals/practitioners recognize nanomaterials' significance in the environmental domain. The book will also help understand and address the environmental sectors' complications via nanomaterials' utilization and applications. Hence, this book will serve as a textbook and will help students, professionals/practitioners, scientists, researchers, and academicians in various research domains.

Author(s): Ravindra Pratap Singh, Kingsley Eghonghon Ukhurebor, Jay Singh, Charles Oluwaseun Adetunji, Kshitij RB Singh
Publisher: Springer
Year: 2022

Language: English
Pages: 468
City: Cham

Preface
Acknowledgments
Contents
Editors and Contributors
1 Introduction to Nanobiosensors
1.1 Introduction
1.2 Types of Nanobiosensors
1.3 Properties and Fabrication of Nanobiosensors
1.4 Potentialities of Nanobiosensors in the Environment Domain
1.5 Miscellaneous Applications of Nanobiosensors
1.5.1 Agricultural
1.5.2 Biomedical
1.5.3 Food Safety and Monitoring Applications
1.6 Recent Trends and Limitations
1.7 Conclusion
References
2 Classification, Properties, and Fabrication Techniques of Nanobiosensors
2.1 Introduction
2.2 Classification of Nanobiosensors
2.2.1 Classification Based on Transducer
2.2.2 Based on Bioreceptors
2.3 Properties of Nanobiosensors
2.4 Fabrication of Nanobiosensors
2.4.1 Physical Fabrication
2.4.2 Chemical Fabrication
2.4.3 Surface Modifications
2.5 Challenges and Future Perspectives
2.6 Conclusion
References
3 Nanobiosensors’ Potentialities for Environmental Monitoring
3.1 Introduction
3.2 Types of Nanobiosensors
3.2.1 NPs-Based Biosensors (NPBS)
3.2.2 NTs-Based Sensors (NTBS)
3.2.3 NWs-Based Sensors (NWBSs)
3.2.4 QDs-Based Sensors (QDNSs)
3.3 Nanobiosensors for Detection of Environmental Pathogens
3.3.1 Viruses
3.3.2 Fungus
3.3.3 Bacteria
3.4 Nanobiosensors for the Detection of Heavy Metals
3.5 Nanobiosensor for Detection of Soil and Air Contaminants
3.5.1 Soil Contaminants
3.5.2 Air Contaminants
3.6 Conclusion and Prospects
References
4 Utilization of Nanobiosensors for Wastewater Management
4.1 Introduction
4.2 Nanobiosensors
4.3 Nanomaterials for Wastewater Treatment
4.4 Application and Importance of Nanobiosensors for Wastewater Treatment
4.5 Conclusion
References
5 Nanobiosensors for Environmental Risk Assessment and Management
5.1 Introduction
5.2 Environmental Risk Assessment
5.3 Nanobiosensors for Environmental Risk Assesment and Management
5.3.1 Hazard Identification
5.3.2 Risk Assessment and Evaluation
5.3.3 Risk Management and Communication
5.3.4 Monitoring and Feedback
5.4 Conclusion
5.5 Future Remarks
References
6 Challenges and Scope in Nanobiosensors Utilization for Environmental Monitoring
6.1 Introduction
6.2 Importance of Nanobiosensors for Environmental Monitoring
6.3 Scope of Nanobiosensor in Environmental Monitoring
6.3.1 Detection of Heavy Metals
6.3.2 Detection of Microorganism
6.4 Nanobiosensors in Health Care
6.4.1 Nanobiosensors for Detection of Food- and Water-Borne Microorganisms
6.4.2 Nanobiosensors for Detection of Microbial Toxins
6.4.3 Nanobiosensors for Detection of Viruses
6.4.4 Nanobiosensors for Detection of Pesticide
6.5 Nanobiosensors for Environment Safety and Security
6.6 Conclusion
References
7 Role and Significance of Nanobiosensors for Environmental Remediation
7.1 Introduction
7.2 Role and Significance of Nanobiosensors for Environmental Monitoring
7.3 Nanobiosensors for Environmental Remediation
7.3.1 Fertilizer Residues
7.3.2 Pesticide Detection
7.3.3 Heavy Metal Detection
7.3.4 Detection of Escherichia Coli
7.4 Conclusion and Outlook
References
8 Bioluminescence Sensors for Environmental Monitoring
8.1 Introduction
8.1.1 Proper Organism—Application and Choice
8.1.2 Medicinal Plant—Cultivation Environment Monitoring
8.1.3 Infectious Disease Detection—Biosensor
8.1.4 Bacteria as Biosensors
8.2 The Principle of Bacterial Bioluminescent Biosensor
8.3 Aptamers
8.4 Heavy Metals
8.4.1 Arsenic
8.4.2 Lead
8.4.3 Silver (Ag)
8.5 Soil Contaminants—Aptamer
8.5.1 Using Aptamer-Based Biosensors for Monitoring Lead in Soil
8.5.2 Agricultural Toxins Detection Present in Soil
8.6 Aptamers for Monitoring Air Quality
8.7 Bacterial Detection Aptamer-Based Biosensors
8.7.1 Listeria Monocytogenes
8.7.2 Vibrio Species
8.8 Applications of Bioluminescent Biosensors
8.8.1 Detection of Environmental Contaminants
8.8.2 Applications in the Food Industry
8.8.3 Bio Drug Delivery Systems
8.9 Perspectives and Recommendations
8.10 Conclusion
References
9 Microbial and Plant Cell Biosensors for Environmental Monitoring
9.1 Introduction
9.2 Types of Biosensors
9.2.1 Gold Nanorods (GNRs-DNA) DNA Biosensors
9.2.2 Enzyme-Linked Immunosorbent Assay (ELISA)
9.2.3 Quartz Crystal Microbalance (QCM) Biosensor
9.2.4 Microbial Biosensors
9.3 The Environmental Application of Genetic/Protein Engineering and Synthetic Biology in the Development of Microbial Biosensor
9.4 Environmental Application of Biosensor
9.5 The Application of Plant Cell Biosensors for Environmental Monitoring
9.6 Application of Plant as a Biosensor of Pollutants in the Environment and Monitoring of Pollutants
9.7 Current Research Trends, Future Challenges, and Limitations of Biosensor Technology
9.8 Conclusion and Future Recommendation
References
10 Biomimetic Material-Based Biosensor for Environmental Monitoring
10.1 Introduction
10.2 Biomimetic
10.3 Biomimetic Nanobiosensors
10.4 Pathogen Microorganisms
10.5 Butterfly Wings
10.6 Bioelectronic Nose
10.7 Nanoenzymes
10.8 Conclusion
References
11 Chemiluminescence Sensors for Environmental Monitoring
11.1 Introduction
11.2 Instrumentation for CL Sensors
11.2.1 Light-Detection
11.2.2 Flow Injection Technique
11.3 Applications
11.3.1 Determination of the Analytes in the Air/Vapor
11.3.2 Chemiluminescence-Based Sensors on Metal Ions and Non-metal Ions
11.3.3 Determination of the Analytes in the Liquid
11.4 Chemiluminescence for Reactive-Oxygen Species Sensing and Imaging Analysis
11.5 Conclusions and Prospects
References
12 Nanobiosensor for Mycotoxin Detection in Foodstuff
12.1 Introduction
12.2 Categories of Mycotoxins
12.2.1 Fumonisins
12.2.2 Aflatoxins
12.2.3 Ochratoxins
12.2.4 Trichothecenes
12.2.5 Zearalenone
12.3 Orthodox Techniques for Mycotoxin Identification
12.3.1 Chromatographic-Based Methods
12.3.2 Immunochemical-Based Methods
12.3.3 Microarrays
12.4 Biosensors for the Recognition of Mycotoxins
12.5 Principle of Operational Manual of Nanomaterial in Nanobiosensors
12.6 Versatility of Nanomaterials in Mycotoxin Detection
12.7 Sensing Performance of Nanobiosensors for Mycotoxin Detection
12.8 Nanobiosensors for the Recognition of Mycotoxins
12.9 Benefits and Challenges Associated with Detection of Mycotoxin by Using Nanobiosensors
12.10 Conclusion and Future Aspects
References
13 Current Existing Techniques for Environmental Monitoring
13.1 Introduction
13.2 Carbon Nanotubes (CNTs)
13.3 Functionalization
13.4 CNTs-Based Biosensors for HMI Sensing
13.4.1 Optical Biosensors
13.4.2 Field-Effect Transistor (FET) Biosensors
13.4.3 Electrochemical Biosensors
13.5 Applications of CNT-Based Sensors in Gas Sensing
13.5.1 CNT-Based Gas Sensors
13.5.2 Photosensors for Gas Sensing
13.5.3 FET Sensors for Gas Sensing
13.5.4 Pressure Sensors for Gas Sensing
13.6 Conclusion
References
14 Molecularly Imprinted Polymers-Based Nanobiosensors for Environmental Monitoring and Analysis
14.1 Introduction
14.2 Molecularly Imprinted Polymers
14.3 Application of MIP-Based Nanobiosensors for Environmental Monitoring and Analysis
14.3.1 Pesticide Detection
14.3.2 Pharmaceutical Product Detection
14.3.3 Heavy Metals Detection
14.4 Conclusion and Future Perspective
References
15 Plasmonic Nanoparticles for Naked-Eye Detection of Environmental Pollutants
15.1 Introduction
15.2 Colorimetry-Based Plasmonic Nanoparticles
15.3 Plasmonic Nanoparticles
15.4 Noble Metal Nanomaterials
15.5 Plasmonic Nanoparticle-Based Naked-Eye Colorimetry Method
15.6 The Applications of the Plasmonic Nanoparticles in the Environmental Pollutant’s Detection
15.6.1 Toxic Heavy Metal
15.6.2 Organo-Phosphate Pesticides
15.6.3 Aromatic Compounds
15.6.4 Other Pollutant Compounds
15.7 Conclusions and Future Outlooks
References
16 Utility of Nano Biosensors for Heavy Metal Contamination Detection in the Environment
16.1 Introduction
16.2 Statistical Prevalence and Epidemiology of Heavy Metal Ion Contamination
16.3 Traditional Approaches for Arsenic (As) Monitoring in Water
16.3.1 Standard UV-Visible Technique
16.3.2 Mass Spectroscopic Techniques
16.3.3 Chromatographic Techniques
16.4 Current Approaches for Monitoring of Arsenic
16.4.1 Microbial Fuel Cell (MFC) Based Biosensor
16.4.2 Transducer Based Biosensors for Heavy Metal Detection
16.5 Commercially Available Sensors for Arsenic Detection
16.6 Conclusion and Future Prospect
References
17 Nanobiosensors and Industrial Wastewater Treatments
17.1 Introduction
17.2 Nanomaterials for Wastewater Treatment
17.2.1 Nano Adsorption and Remediation
17.2.2 Membrane Filtration
17.2.3 Nanobiosensing and Monitoring
17.3 Industrial Wastewater Treatment
17.3.1 Based on Bio-recognition Elements
17.3.2 Based on the Type of Nanomaterial
17.3.3 Applications of Nanobiosensors
17.3.4 Conclusion
17.3.5 Future Aspects
References
18 Nanobiosensors Potentialities for Monitoring SARS-CoV-2 in the Environment
18.1 Introduction
18.2 Origin and Structure of SARS-CoV-2
18.2.1 Biological Properties of the SARS-CoV-2
18.2.2 Climate and COVID-19
18.3 Current Applications in Nanotechnology for Combat COVID-19
18.3.1 Biosensors for Detection of Coronaviruses
18.3.2 Electrochemical Nanobiosensors
18.3.3 SARS-CoV-2 Electrochemical Nanobiosensors Based on Gold Nanostructures
18.3.4 SARS-CoV-2 Electrochemical Nano Biosensors Based on Carbon and Graphene Materials
18.3.5 Optical Nanobiosensors
18.3.6 Magneto-Optical Nanobiosensors
18.3.7 Piezoelectric Nanobiosensors
18.3.8 Wearable and Smart Nanobiosensors
18.3.9 Field-Effect Transistor
18.4 Challenges and Prospects
18.5 Conclusion
References
19 Recent Trends in Rapid Environmental Monitoring of Toxicants Using Nanobiosensors
19.1 Introduction
19.2 Noble Metal Nanoparticles in Biosensors
19.3 Nanosensors and Nanobiosensors for Monitoring the Environmental Pollutants
19.3.1 Nanobiosensors for Assessment of Harvest Index
19.3.2 Nanobiosensors for Monitoring of Agriculture Pathogen
19.3.3 Lipid Membrane-Based Nanosensors for Environmental Monitoring
19.3.4 DNA-Nanosensors for Environmental Monitoring
19.3.5 Optical Biosensors for Environmental Applications
19.4 Recent Progress in Biosensors for Environmental Monitoring
19.5 Biosensors a Promising Future in Measurements
19.6 Future Perspectives
19.7 Conclusion
References
20 Ecotoxicology of Nanomaterials: A Sensor Perspective
20.1 Introduction
20.2 Types of NMs
20.2.1 Metal-Based NMs
20.2.2 Lipid-Based NMs
20.2.3 Polymer-Based NMs
20.2.4 Carbon-Based NMs
20.2.5 Nanocomposites (NCs)
20.3 Environmental Occurrence of NMs
20.3.1 Nanomedicine
20.3.2 Care Products
20.3.3 Environmental Monitoring
20.3.4 Agriculture
20.3.5 Antimicrobial Nanopackaging Material
20.3.6 Textiles
20.3.7 Sports Equipment
20.4 NMs in the Global Market
20.5 Behaviors of NMs in the Environment
20.5.1 In the Aquatic Environment
20.5.2 Biophysicochemical Behavior and Fate of NMs in Soil
20.5.3 Biophysicochemical Behavior and Fate of NMs in Air, Human, and Animals
20.6 Conclusions
References
21 Legal Implications of Nanobiosensors Concerning Environmental Monitoring
21.1 Introduction
21.2 The Concept of NBS in Environmental Monitoring
21.3 NBS for Environmental Monitoring Complimenting Some International Environmental Legal Framework
21.4 Legal Implications and Challenges Concerning NBS for Environmental Monitoring
21.4.1 The European Union Directives of 2008/98/EC with Regard to Waste
21.4.2 The Stockholm Convention on Persistence Organic Pollutants
21.4.3 The Basel Convention
21.4.4 Bamako Convention
21.5 Conclusion and Recommendations
References