Nano-Surface Chemistry

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Describes hierarchical assemblies in biology and biological processes that occur at the nanoscale across membranes and at interfaces.

Author(s): Morton Rosoff
Edition: 1st
Publisher: Marcel Dekker
Year: 2001

Language: English
Pages: 674
City: New York

Contents......Page 0
Nano-Surface Chemistry......Page 1
Preface......Page 3
Contents......Page 4
Contributors......Page 6
Introduction......Page 8
I. INTRODUCTION......Page 11
II. SURFACE FORCES MEASUREMENT......Page 12
III. ALCOHOL CLUSTER FORMATION ON SILICA SURFACES IN CYCLOHEXANE......Page 13
IV. ADSORPTION OF POLYELECTROLYTES ONTO OPPOSITELY CHARGED SURFACES......Page 17
V. POLYPEPTIDE AND POLYELECTROLYTE BRUSHES......Page 19
A. Brush Layers of Poly(glutamic acid) and Poly(lysine)......Page 20
B. Density-Dependent Transition of Polyelectrolyte Layers......Page 23
REFERENCES......Page 25
I. ADHESION OVERVIEW......Page 27
A. Continuum Mechanics......Page 28
B. Molecular Dynamics and First-Principles Calculations......Page 34
A. Atomic Force Microscopy......Page 38
IV. ADHESION IN NATURE......Page 63
REFERENCES......Page 66
A. Basic Features of Langmuir–Blodgett Film Formation and Study......Page 69
B. Langmuir Monolayers and Langmuir–Blodgett Films of Fatty Acids......Page 71
B. Microscopy Methods......Page 75
C. Other Methods......Page 77
A. Introduction......Page 79
B. Langmuir–Blodgett Films Containing Metallic Nanoparticles......Page 80
C. Langmuir–Blodgett Films Containing Semiconductor Nanoparticles......Page 90
D. Langmuir–Blodgett Films Containing Magnetic Nanoparticles......Page 105
A. Introduction......Page 108
B. Langmuir–Blodgett Films Containing C60 and C70......Page 109
V. LANGMUIR–BLODGETT FILMS WITH NANOSCALE PATTERNS......Page 126
VI. MOLECULAR-LEVEL SIMULATIONS OF LANGMUIR MONOLAYERS AND LANGMUIR–BLODGETT FILMS......Page 128
A. Simulations of Surfactants with Hydrocarbon Chains and Carboxyl Head Groups......Page 129
B. Simulations of Other Surfactants......Page 136
REFERENCES......Page 141
A. Langmuir Film Engineering......Page 151
B. Layer-by-Layer Film Engineering......Page 154
C. Organic Materials......Page 157
A. Brewster-Angle Microscopy......Page 158
C. Atomic Force Microscopy......Page 159
D. Fourier Transform Infrared Spectroscopy......Page 160
E. Gravimetric Measurements......Page 161
G. Electrochemistry......Page 162
IV. ROLE OF MOLECULAR CLOSE PACKING ON PROTEIN THERMAL STABILITY......Page 163
V. INDUSTRIAL BIOCATALYSIS......Page 166
VI. REACTION-CENTER-BASED PHOTOCELLS......Page 170
VII. PURPLE-MEMBRANE-BASED OPTOELECTRONIC APPLICATIONS......Page 171
VIII. METALLOPROTEIN MONOLAYERS FOR HEALTH SENSORS......Page 175
A. Metalloproteins and Metal-Binding Sites......Page 176
B. Cytochrome P450 Side-Chain Cleavage and Cholesterol Monitoring......Page 178
IX. SINGLE-ELECTRON AND QUANTUM PHENOMENA IN ULTRASMALL PARTICLES......Page 184
A. Ultrathin Semiconductor Layers and Superlattices......Page 195
X. DNA-BASED MULTIQUARTZ SENSOR......Page 201
A. Light-Emitting Diodes......Page 204
B. Batteries......Page 206
XII. ORGANIC PHOTOVOLTAIC CELLS......Page 207
XIII. HYDROGEN STORAGE IN CARBON NANOTUBE......Page 212
A. Single-Wall Carbon Nanotube (SWNT)......Page 214
REFERENCES......Page 216
I. INTRODUCTION......Page 222
B. Historical Overview......Page 223
C. Langmuir Films of Core-Shell Latex Particles......Page 227
D. Parameters Influencing Film Formation......Page 230
III. LANGMUIR–BLODGETT MONOLAYERS OF LATEX PARTICLES......Page 232
IV. LANGMUIR–BLODGETT MULTILAYERS OF LATEX PARTICLES......Page 236
A. Electrostatic Adsorption......Page 237
B. Chemisorption......Page 244
VI. CONCLUSIONS......Page 246
REFERENCES......Page 247
I. INTRODUCTION......Page 252
II. EXPERIMENTAL STUDIES OF WETTING PHENOMENA......Page 256
B. Dependence of Electrostatic Force on Distance......Page 253
C. Effect of Dielectric Constant on Topographic Heights......Page 260
D. Separation of Topography and Contact Potential......Page 262
A. Disjoining Pressure Effects on the Contact Angle of Small Droplets......Page 263
B. Layering......Page 270
C. Structure of Water on Moist Surfaces......Page 278
D. Ion Solvation, Mobility, and Exchange......Page 286
E. Water Adsorption on Alkali Halides......Page 287
F. Corrosion......Page 290
REFERENCES......Page 294
I. INTRODUCTION......Page 297
A. Capillarity and Elasticity at the Triple Line......Page 298
B. Evidence of the “Wetting Ridge”......Page 300
C. Dynamic Considerations......Page 301
E. Wetting of a Sessile Drop......Page 303
A. Evidence of Viscosity-Independent Spreading......Page 304
B. Swelling Effect......Page 306
A. Hard Substrate......Page 311
B. Soft, Viscoelastic Substrate......Page 312
V. CONSEQUENCES OF SOLID DEFORMATION IN CAPILLARY FLOW......Page 318
VI. CONCLUSIONS......Page 320
REFERENCES......Page 321
II. SYNTHESIS OF NANOCRYSTALS [37,38]......Page 322
A. Monolayers of Silver Nanocrystals......Page 323
IV. “SUPRA-CRYSTALS” IN FCC STRUCTURE MADE OF NANOCRYSTALS......Page 325
A. Silver Nanocrystals [5,6]......Page 326
A. Collective Optical Properties......Page 328
C. Electron Transport Properties of Nanocrystals Either Isolated or Self-Assembled in 2D and 3D Superlattices......Page 332
D. Collective Magnetic Properties of Cobalt Nanocrystals......Page 335
REFERENCES......Page 337
A. Occurrence and Ultrastructure of S-Layers......Page 339
B. Isolation, Molecular Biology, and Chemical Characterization of S-Layers......Page 342
C. Assembly and Morphogenesis of S-Layers......Page 344
A. Molecular Sieving Properties of S-Layer Lattices......Page 350
B. Production and Rejection Characteristics of S-Layer Ultrafiltration Membranes (SUMs)......Page 351
D. Surface Properties of Native S-Layer Lattices from Bacillaceae......Page 352
E. Surface Properties of Glutaraldehyde-Treated S-Layer Lattices......Page 353
A. General Introduction......Page 356
B. Immobilization of Enzymes......Page 357
C. Immobilization of Ligands and Immunoglobulins......Page 358
D. Affinity Microparticles......Page 359
E. S-Layers as Novel Matrix for Dipstick-Style Solid-Phase Immunoassays......Page 360
F. Biosensors Based on S-Layer Technology......Page 361
G. S-Layers for Vaccine Development......Page 363
V. RECRYSTALLIZATION AT THE LIQUID–AIR AND LIQUID–SOLID INTERFACES......Page 364
VI. S-LAYER AS TEMPLATES FOR THE FORMATION OF REGULARLY ARRANGED NANOPARTICLES......Page 365
VII. WRITING WITH MOLECULES......Page 367
VIII. S-LAYER AS SUPPORTING STRUCTURE FOR FUNCTIONAL LIPID MEMBRANES......Page 368
A. Crystallization of S-Layers on Lipid Membranes and Liposomes......Page 369
B. SUM-Supported Lipid Membranes......Page 379
C. Solid-Supported Lipid Membranes......Page 381
D. Functionalization of S-Layer-Supported Lipid Membranes......Page 383
E. Stability of S-Layer-Supported Lipid Membranes......Page 385
IX. PATTERNING OF S-LAYERS RECRYSTALLIZED ON SOLID SUPPORTS......Page 386
X. CONCLUSIONS AND PERSPECTIVES......Page 389
REFERENCES......Page 390
I. INTRODUCTION......Page 396
II. PROPERTIES OF DNA AND NATIVE NUCLEIC ACID–BASED NANOSTRUCTURES......Page 397
A. Semisynthetic DNA–Protein Conjugates......Page 401
B. DNA-Based Nanocluster Assembly......Page 408
C. Nanostructured Molecular Scaffolds from DNA......Page 411
A. DNA-Templated Synthesis......Page 416
B. DNA as a Material in Microelectronics......Page 418
C. Nucleic Acid–Functionalized Microstructured Surfaces......Page 421
V. CONCLUSIONS......Page 428
REFERENCES......Page 429
I. INTRODUCTION......Page 436
II. STRUCTURE OF DNA IN SOLUTION......Page 437
A. DNA/Polymer Complexes Based on Hydrogen Bonding......Page 438
B. Assemblies Based on the Insertion into Sequences of Some Building Blocks that Do Not Participate in Double-Helix Formation......Page 439
D. Assemblies Based on the DNA Condensation Phenomenon......Page 440
F. DNA Assemblies Based on Counterion Condensation......Page 441
IV. CONCLUSIONS......Page 460
REFERENCES......Page 461
I. INTRODUCTION......Page 465
II. SUPRAMOLECULAR ASSEMBLIES MADE OF NATURAL STRUCTURAL PROTEINS......Page 466
IV. SUPRAMOLECULAR ASSEMBLIES MADE OF POLYPEPTIDES......Page 467
V. ORIENTATION AND PATTERNING OF PROTEINS ON SOLID SURFACES......Page 469
VI. PREDESIGNED THREE-DIMENSIONAL SELF-ASSEMBLY OF PROTEINS: “CRYSTAL ENGINEERING”......Page 470
VII. APPLICATIONS OF NANOSTRUCTURES MADE OF BIOLOGICAL MACROMOLECULES......Page 471
REFERENCES......Page 473
I. INTRODUCTION......Page 476
A. Structural and Dynamic Properties of Reversed Micelles......Page 477
B. Solubilization in Reversed Micelles......Page 478
A. Structural and Dynamic Properties of Water-Containing Reversed Micelles......Page 482
B. Solubilization in Water-Containing Reversed Micelles......Page 486
C. Solubilization of Electrolytes......Page 487
D. Solubilization of Small Polar and Amphiphilic Molecules......Page 488
E. Solubilization of Macromolecules......Page 491
F. Hosting Nanoparticles......Page 493
G. Hosting Nanogels......Page 496
A. Intermicellar Interactions in Semidilute Solutions of Water-Containing Reversed Micelles......Page 497
B. Concentrated Solutions of Water-Containing Reversed Micelles......Page 498
REFERENCES......Page 500
I. INTRODUCTION......Page 508
A. Engineering of Particle Surfaces......Page 509
B. Application of Self-Assembly to Colloids......Page 510
A. Hollow Capsule Processing......Page 518
IV. CONCLUSIONS AND OUTLOOK......Page 525
REFERENCES......Page 526
I. INTRODUCTION......Page 529
A. Classification of Electrophoresis Media......Page 531
B. Example Electrophoresis Media......Page 536
C. Structural Properties of Electrophoresis Media......Page 545
III. GENERAL EQUATIONS FOR TRANSPORT IN ELECTRIC FIELDS......Page 561
IV. DIFFUSION......Page 563
B. Comments on Diffusion in Porous Media......Page 564
C. Obstruction Effects......Page 568
D. Hydration Effects......Page 579
E. Effect of Solute Size......Page 580
F. Hydrodynamic Interactions......Page 582
G. Experimental Methods and Comparison to Theories......Page 585
A. Electrophoresis in Solution......Page 587
B. Electrophoresis of Noninteracting Solutes in Gels......Page 591
C. Electrochromatography......Page 604
D. Electrophoretic NMR Spectroscopy......Page 605
VI. CONCLUSIONS......Page 606
NOTATION......Page 607
ACKNOWLEDGMENTS......Page 608
REFERENCES......Page 609
I. INTRODUCTION......Page 627
A. Electrolytes......Page 629
B. Nano-Surface......Page 632
A. Charge-Induced Concentration Profiles......Page 634
B. Reduced Ion Exchange Capacity/Nonneutrality......Page 636
C. Salt Exclusion......Page 637
IV. FORCES BETWEEN CHARGED SURFACES......Page 639
A. Theories and Experiments......Page 640
B. Monte Carlo Simulations......Page 641
A. Continuum Theory of Ion Transport......Page 643
B. Experimental Work......Page 644
C. Molecular Dynamics Simulation......Page 645
VI. SUMMARY AND OUTLOOK......Page 650
REFERENCES......Page 651
I. INTRODUCTION......Page 654
II. CLAY STRUCTURE AND DISPERSION IN POLYMER......Page 655
IV. INTERCALATION OF CATIONIC SURFACTANTS IN CLAY GALLERIES......Page 657
V. SYNTHESIS AND PROPERTIES OF POLYMER–CLAY NANOCOMPOSITES......Page 658
A. Polymer–Clay Nanocomposites Synthesized from Monomers......Page 660
B. Polymer–Clay Nanocomposites Synthesized from Precursors......Page 662
C. Polymer–Clay Nanocomposites Synthesized from Polymer Solution......Page 666
D. Polymer–Clay Nanocomposites Synthesized via Melt Intercalation......Page 667
VI. THERMODYNAMICS OF INTERACTIONS BETWEEN POLYMER AND ORGANOCLAY......Page 669
VII. CONCLUDING REMARKS......Page 671
REFERENCES......Page 672