Nano-Strategies for Addressing Antimicrobial Resistance: Nano-Diagnostics, Nano-Carriers, and Nano-Antimicrobials

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Antibiotics, the backbone of modern clinical-medicine, are facing serious challenges from emerging antimicrobial-resistance (AMR), a complicated phenomenon expanding in bacterial species, from nosocomial to community origins, where microbes are no longer sensitive to a range of commonly used antibiotics. AMR has exploded in recent years and is posing a serious threat to human health and survival. This necessitates novel and effective ways of diagnosis, drug-delivery, and treatment; nanotechnology and advanced nanomaterials are hailed as a potent solution in containing AMR.The main thrust of this volume is to explain the most current research on the central theme of potential use of nano-approaches for diagnosis, detection, drug-delivery and as antimicrobial agents against drug-resistant pathogenic microbes. This book provides an integrated blend of basic and advanced information for students, scholars, scientists and practitioners, interested or already engaged in research in these areas. We have brought together leading international authors to present and highlight various aspects of nanotechnology in combating AMR in WHO-prioritized microbes. Topics range from advances in nanomaterial synthesis, characterization, functionalization and improvisation, as well as applications in sensing, diagnosis of AMR, and their therapeutic and drug-delivery potential against MDR and XDR microbial phenotypes.

Author(s): Vinay Kumar, Varsha Shriram, Ravi Shukla, Suresh Gosavi
Series: Nanotechnology in the Life Sciences
Publisher: Springer
Year: 2022

Language: English
Pages: 417
City: Cham

Preface
Contents
About the Editors
Chapter 1: The History of Antibiotics Illumes the Future of Antimicrobial Peptides Administered Through Nanosystems
1.1 Introduction
1.2 Antibiotics: Key Events from Prehistory to the Golden Age
1.3 Antibiotic Resistance: Health Crisis and Solutions
1.4 Antimicrobial Peptides (AMPs): Conception and History
1.5 Diversification, Structural Characterisation and Mechanisms of Action of AMPs
1.5.1 Alpha-Helical AMPs
1.5.2 Beta-Sheet AMPs
1.5.3 Loop AMPS
1.5.4 Extended AMPs
1.6 Immunomodulatory Signalling of AMPs
1.7 Bacterial Resistance to AMPs
1.7.1 Extracellular Mechanisms of Resistance
1.7.2 Alterations of Cell Wall and Membrane Mechanism
1.7.3 Efflux Mechanism
1.7.4 Biofilms
1.8 De Novo Designed AMPs as Potential Therapeutics
1.9 Summary of the Current Knowledge on Antimicrobials Primes a Promising Upshot of Nanotechnology
1.10 Drug Delivery System Strategies for AMPs
1.11 Nano-drug Delivery Systems for AMPs
1.11.1 Inorganic Nanomaterial: Metal Nanoparticles (MNPs)
1.11.2 Hydrogel-Based Nanoparticles: Nanogels
1.11.2.1 Nanogels
1.11.3 Lipid-Based Nanomaterials: Nanoliposomes and Nano-micelles
1.11.4 Inorganic Polymer-Based Nanomaterial: Nanofibres
1.11.5 Organic Polymer-Based Nanomaterials: Self-Assembled Peptides
1.12 Conclusions
References
Chapter 2: Current Approaches and Prospects of Nanomaterials in Rapid Diagnosis of Antimicrobial Resistance
2.1 Introduction
2.2 Current Diagnostic Tools for AST and AMR
2.2.1 Phenotypic Methods
2.2.1.1 Automated Phenotypic AST Systems
2.2.2 Genotypic Methods
2.2.2.1 PCR-Based Techniques
2.2.2.2 Isothermal Amplification-Based Techniques
2.2.2.3 Automated Genotypic Methods
2.2.3 Sequencing-Based Approaches
2.2.3.1 Whole-Genome Sequencing
2.2.3.2 Next-Generation Sequencing
2.3 Nano-biosensors for Rapid Detection of Antimicrobial Resistance
2.3.1 Optical Nano-biosensors for the Rapid AMR/AST Detection
2.3.1.1 Colorimetric Nano-biosensors
2.3.1.2 Fluorometric Nano-biosensors
2.3.2 Electrochemical Nano-biosensors
2.4 Challenges and Future Prospects
2.5 Concluding Remarks
References
Chapter 3: Nanomaterial-Mediated Delivery of Antimicrobial Agents: ‘The Nanocarriers’
3.1 Introduction
3.2 Nanocarriers as Emerging Drug Delivery Systems
3.3 Types of Nanocarriers
3.3.1 Metal-Based
3.3.1.1 Silver Nanoparticles (AgNPs)
3.3.1.2 Gold Nanoparticles (AuNPs)
3.3.1.3 Ceramic Nanoparticles
3.3.1.4 Silica Nanoparticles
3.3.2 Liposome-Based
3.3.3 Quantum Dots (QDs)
3.3.4 Biopolymeric Nanomaterials
3.3.5 Dendrimers
3.3.6 Photothermally Activated Nanomaterials (PANs)
3.3.7 Carbon-Based Nanomaterials
3.3.7.1 Graphene-Based Nanomaterials
3.3.7.2 Carbon Nanotubes (CNTs)
3.3.7.3 Fullerenes
3.3.7.4 Carbon-Based Nanodots
3.3.7.5 Carbon Nitride Nanomaterials
3.4 Antimicrobial Agents and Their Inhibitory Mechanisms
3.4.1 Antibiotics
3.4.2 Antimicrobial Peptides (AMPs)
3.4.3 Phytochemicals
3.4.4 Metals, Metal-Based Complexes and Metallic Nanoparticles
3.5 Nanomaterial-Based Antimicrobial Delivery Targeting Drug-Resistant Determinants
3.5.1 Bacterial Cell Membrane
3.5.2 Biofilms
3.5.3 Efflux Pumps (EPs)
3.5.4 Quorum Sensing
3.6 Conclusion and Future Perspectives
References
Chapter 4: Nanoparticle Functionalization: Approaches and Applications
4.1 Introduction
4.2 Nanoparticle Functionalization
4.3 Approaches to Functionalization
4.3.1 Non-covalent Conjugation
4.3.2 Covalent Conjugation
4.3.3 Use of Linker Molecules
4.4 Hybrid Nanoparticles
4.4.1 Metal Organic Framework
4.4.2 Mesoporous Silica Nanoparticles
4.4.3 Conjugation of NPs with Organic Molecules
4.5 Applications of the Functionalized Nanomaterials
4.5.1 Drug Delivery
4.5.2 Tissue Engineering
4.5.3 Antimicrobial Resistance
4.5.4 Molecular Imaging
4.5.5 Biosensors
4.6 Conclusion
References
Chapter 5: Nano-adjuvants as Effective Next-Generation Antimicrobial Agents
5.1 Introduction
5.2 Nano-adjuvants Against Microbes
5.2.1 Carbohydrate-Based Adjuvants
5.2.2 Gold-Based Nanoparticle Adjuvant
5.2.3 Zinc-Based Nanoparticle Adjuvant
5.3 Conclusion
References
Chapter 6: Limiting Antibiotic-Resistant Bacteria Using Multifunctional Nanomaterials
6.1 Introduction
6.2 Mechanism Underlying Antibiotic Resistance in Microbes
6.2.1 Competition to Antibiotics and Resistance to Persister
6.2.2 Low Drug Uptake and High Efflux
6.2.3 Biofilm Formation
6.2.4 Antibiotic Modification
6.2.5 Swarming
6.3 Nanotechnology-Mediated Strategies to Overcome MDR in Microbes
6.3.1 Nitric Oxide-Releasing Nanomaterials
6.3.2 Metal-Based Nanoparticles
6.3.2.1 Titanium Dioxide Nanoparticles
6.3.2.2 Zinc Oxide Nanoparticles
6.3.2.3 Silver Nanoparticles
6.3.2.4 Copper Oxide Nanoparticles
6.3.2.5 Bismuth Nanoparticles
6.3.2.6 Graphene-Based Nanomaterials
6.3.2.7 Bimetallic Nanomaterials
6.3.2.8 Silica Nanoparticles and Their Derivatives
6.3.2.9 Iron Oxide Nanoparticles
6.3.3 Chitosan-Based Nanomaterials
6.3.4 Aptamer-Conjugated Nanoparticles
6.4 Use of Nanomaterials in Combating Bacterial Diseases of Animals
6.4.1 Brucellosis
6.4.2 Septicemia
6.4.3 Mastitis
6.4.4 Listeriosis
6.4.5 Salmonellosis
6.4.6 Bovine Tuberculosis
6.4.7 Anthrax
6.5 Nanoparticle-Based Antibacterial Strategies in Clinical Studies
6.5.1 Nanoparticles Delivering Antibiotics
6.5.2 Nanoparticle Delivering Antimicrobial Peptides and Antitoxins
6.5.3 Limitations of Nanoparticle-Based Antibacterial Agents
6.6 Conclusion and Expected Future Developments
References
Chapter 7: Microbial Resistance Mechanisms and Potential of Metal-Organic Framework in Mitigation Thereof
7.1 Introduction
7.2 Antimicrobial Agents
7.3 Resistance Mechanisms
7.3.1 Mutation in Antibacterial Target
7.3.2 Reduction in Drug Uptake
7.3.3 Drug Inactivation
7.3.4 Efflux Pumps
7.4 Current Approaches to Mitigate AMR
7.5 Metal-Organic Frameworks
7.6 Physicochemical Properties Lending Antimicrobial Effect to MOFs
7.6.1 MOF as Antimicrobial Drug Delivery System
7.6.1.1 Small Molecular Antibiotics
7.6.1.2 Inorganic Active Agents
7.6.1.3 Biomolecules
7.6.2 MOF Itself as Antimicrobial
7.6.2.1 Disruption of Cell Membrane Integrity
7.6.2.2 Generation of Reactive Species and Photodynamic Effect
7.6.2.3 Intracellular Release of Disruptors
7.7 Future Perspectives of MOF as Antimicrobial
References
Chapter 8: Silver-Based Nano-formulations for Treating Antibiotic-Resistant Microbial Strains
8.1 Introduction
8.2 Colloidal Nano-silver Formulations
8.3 Silver Nanocomposites as Antimicrobials
8.4 Conclusions
References
Chapter 9: Gold Nanoparticles: A Lethal Nanoweapon Against Multidrug-Resistant Bacteria
9.1 Introduction
9.2 Different Types of AuNPs
9.2.1 Au Nanospheres
9.2.2 Au Nanorods
9.2.3 Au Nanocages
9.2.4 Au Nanoshells
9.2.5 Au Nanostars
9.3 Antibacterial Activity of AuNPs
9.3.1 Antibacterial Activity Against Pathogenic Bacteria
9.3.2 Antibacterial Activity Against Multidrug-Resistant (MDR) Bacteria
9.4 Mechanism of Antibacterial Activity of Au Nanoparticles
9.5 Biocompatibility of Au Nanoparticles
9.6 Conclusions and Future Perspectives
References
Chapter 10: Antimicrobial Potentials of Zinc and Iron Oxide Nanoparticles
10.1 Introduction
10.2 Emergence of Nanomaterials as Effecting Antimicrobial Agents
10.3 Antimicrobial Potencies of Zinc/Zinc Oxide Nanoparticles (ZnO NPs) Against Drug-Resistant Microbes (Fig. 10.1)
10.4 Antimicrobial Potencies of Iron/Iron Oxide Nanoparticles (IONPs) Against Drug-Resistant Microbes (Fig. 10.2)
10.5 Mode of Action of ZnO NPs and IONPs Against Drug-Resistant Microbes
10.6 Conclusion and Future Outlook
References
Chapter 11: Carbon Nanostructures for Fighting Antimicrobial Resistant Bacteria
11.1 Introduction
11.2 Antimicrobial Resistant Bacteria: A Global Concern
11.3 Antimicrobial Resistance Mechanism
11.4 Inactivation or Changes in Drug
11.5 Modification of the Active Site or the Receptor
11.6 Alteration in Permeability of Cell Which Results in Reduced Deposition of Drug Within Cell
11.7 Biofilm Formation
11.8 Carbon Nanotubes and Its Antimicrobial Properties
11.9 Synthesis of CNTs
11.10 Antimicrobial Properties of CNT and CNT Composites
11.11 Conclusions and Future Aspects
References
Chapter 12: Nanoformulations Against Multidrug-Resistant Members of ESKAPE Pathogens
12.1 Introduction
12.2 ESKAPE Pathogens and Evolution of Their Resistance Mechanisms
12.2.1 Vancomycin-Resistant Enterococcus faecium (VREfm)
12.2.2 Methicillin-Resistant Staphylococcus aureus (MRSA)
12.2.3 Klebsiella pneumoniae
12.2.4 Acinetobacter baumannii
12.2.5 Pseudomonas aeruginosa
12.2.6 Enterobacter spp.
12.3 Nanoformulations as an Emerging Combating Tool Against ESKAPE Pathogens
12.4 Nanoformulation-Based Drug Delivery to Drug Resistance Determinant in ESKAPE
12.4.1 Cell Wall, Cell Membrane, and Membrane Permeabilization
12.4.2 Biofilm Formation
12.4.3 Quorum Sensing
12.4.4 Efflux Pump Inhibition
12.5 Challenges in Clinical Applications of ESKAPE-Combating Nanoformulations
12.5.1 Large-Scale Manufacturing/Scale-Up and Reproducibility
12.5.2 Biological Understanding
12.5.3 The Economic and Financial Barrier
12.5.4 Nanoformulated Drug Characterization and Quality Control Challenges
12.5.5 Biocompatibility and Safety
12.6 Conclusion
References
Index