This proceedings volume details both current and future research and development initiatives in nano-biomedical engineering, arguably the most important technology of the world in the 21st century. It deals with the following four groups of nano-biomedical engineering such as: nano-biomechanics, nano-bioimaging, nano-biodevices, and nano-biointervention. Consisting of a compilation of studies conducted by group members of the Tohoku University Global Center of Excellence Program, with specially coordinated funding from the Japanese Government, the papers emphasize the integration of research and education collaboration between engineering and medicine, and showcase Japan's top-level research in the field of nano-biomedical engineering.
Author(s): Takami, M.D., Ph.D. Yamaguchi
Publisher: Imperial College Press
Year: 2009
Language: English
Pages: 482
Tags: Специальные дисциплины;Наноматериалы и нанотехнологии;Нанобиотехнология;
CONTENTS......Page 8
Foreword......Page 6
SECTION 1: NANO-BIOMECHANICS......Page 14
1. Introduction......Page 16
2. General Formulation......Page 18
3.1. Ultrasonic Measurement Integrated Simulation in Aneurysmal Aorta......Page 19
3.2. MR Measurement Integrated Simulation in Cerebral Artery......Page 23
4. Conclusions......Page 26
References......Page 27
1. Introduction......Page 30
2.1. Endothelial Cell Culture......Page 31
2.3. Measurement of Cellular Topography and Mechanical Properties Using Atomic Force Microscopy......Page 32
3. Results......Page 34
4. Discussion......Page 38
References......Page 40
1. Introduction......Page 42
2.1.2. Fluorescence microscopy......Page 44
2.2. Results and Discussion......Page 45
3.2. Results and Discussion......Page 47
Acknowledgments......Page 51
References......Page 52
1. Introduction......Page 54
2.1. Modeling and Methods......Page 55
2.2. Results and Discussion......Page 57
3. Modeling the Hemodynamics Arising from Malarial Infection......Page 59
3.2. Results and Discussion......Page 60
4. Conclusions......Page 62
References......Page 63
Change in Mechanical Properties and Activities of Matrix Metalloproteinases in Rat Aortas Stimulated with Cytokines Wenjing Huang, Naoya Sakamoto, Toshiro Ohashi, Masaaki Sato......Page 64
2.2. Biomechanical Analysis......Page 65
3. Results......Page 66
4. Discussion......Page 68
References......Page 69
1. Introduction......Page 70
2.1. Basic Equation......Page 71
2.2. Linearized Error Dynamics......Page 73
References......Page 74
1. Introduction......Page 76
2.2. PVA-H Samples......Page 77
3. Results......Page 78
4. Discussions......Page 79
References......Page 81
1. Introduction......Page 84
2. Models and Methods......Page 85
3. Result......Page 87
References......Page 89
1. Introduction......Page 90
2.2. Isolation of Stress Fibers......Page 91
2.3. Force Relaxation Test......Page 92
3. Results......Page 93
4. Discussion......Page 94
References......Page 95
Development of an in vitro Tracking System for Catheter Motion Makoto Ohta, Chang-Ho Yu, Hiroyuki Kosukegawa, Keisuke Mamada, Kanju Kuroki, Shinzo Oota, Kazuto Takashima, Kiyoshi Yoshinaka......Page 96
1. Introduction......Page 97
2.2. Tubular Model with a Realistic Geometry and Introduction of Guide Wire......Page 98
3. Results......Page 99
4. Discussions......Page 100
References......Page 101
1. Introduction......Page 104
2.1. Motility Assay......Page 105
2.2. Characteristic Parameters......Page 106
3. Results and Discussion......Page 107
4. Discussion......Page 109
Acknowledgments......Page 110
References......Page 111
1. Introduction......Page 112
2.2. Local Stretch Experiment......Page 114
3.1. Morphological Changes of ECs after Application of Local Stretch......Page 115
3.2. Discussion......Page 116
References......Page 118
1. Introduction......Page 120
2. Methods......Page 121
3. Results and Discussion......Page 123
Acknowledgments......Page 125
References......Page 126
SECTION 2: NANO-BIOIMAGING......Page 128
1. Introduction......Page 130
1.3. Cross-generational Differences in Brain Shape Index......Page 131
2.1. Image Processing and Statistical Analysis using VBM Technique......Page 132
2.2. Measurement of Brain Shape Index on Brain MRI......Page 133
2.4. Anatomical Network Analysis Using Regional Gray Matter Volume......Page 134
3.1.1. Age related brain volume change......Page 135
3.2. Risk Factors for Brain Volume Decrease......Page 136
3.4. Correlation between Fiber Connection and Cerebral Glucose Metabolism......Page 138
3.5. Gender and Among Decade Differences in Anatomical Network Pattern......Page 139
References......Page 140
1. Introduction......Page 142
2.2. Tissue Classification Using the Likelihood Function......Page 144
3.1. Measurement of Elasticity Distribution of Each Tissue......Page 147
3.2. Results of Classification......Page 148
4. Conclusions......Page 150
References......Page 151
1. Introduction......Page 152
2.4. Points of Evaluation......Page 153
3. Results......Page 154
4. Discussion......Page 157
References......Page 158
1.1. Nano-bio-imaging......Page 160
1.2. Information Available from the Living Human Brain......Page 161
2.1. Functional Imaging of the Histaminergic Nervous System......Page 163
2.2. Imaging Study for Improvement of Quality of Life (QOL) in Patients......Page 166
3.1. Definition of Health......Page 167
3.2. Exercise and Brain Imaging Related to “Physical and Mental Health”......Page 168
References......Page 171
High Intensity Focused Ultrasound Treatment Enhanced with Nano- to Micro-Particles Shin-Ichiro Umemura, Shin Yoshizawa, Kazuaki Sasaki, Ken-Ichi Kawabata......Page 174
1. Introduction......Page 175
2. Mechanism of Enhancement of Ultrasonic Heating with Microbubbles......Page 176
3. Methods......Page 179
4. Results......Page 182
5. Discussion......Page 185
6. Conclusion......Page 186
References......Page 187
1. Introduction......Page 188
2. Methodological Development......Page 189
3. Molecular Imaging of Histaminergic Transmission in the Human Brain List......Page 190
4. Molecular Imaging in Alzheimer’s Disease......Page 192
5. Conclusion......Page 194
References......Page 195
1. Introduction......Page 198
2.1. Animal Model......Page 199
2.4. Ex vivo Detection of Establishment and Metastasis of MRL-N-1-Luc Cells by IVIS......Page 200
2.7. Statistical Analysis......Page 201
3.2. Volume of the Metastatic Lymph Node was Constructed by Using a High-frequency Ultrasonograph......Page 202
3.3. Minimum Axial Diameters of Lymph Nodes were Measured......Page 203
4. Discussion......Page 204
Reference......Page 205
Evaluation of Exercise Induced Organ Energy Metabolism Using Two Analytical Approaches: A Pet Study Mehedi Masud, Toshihiko Fujimoto, Masayasu Miyake, Shoiichi Watanuki, Masatoshi Itoh, Manabu Tashiro......Page 208
2.2. Study Protocol......Page 209
2.4. Statistical Analysis......Page 210
3. Results......Page 211
4. Discussions and Conclusion......Page 212
References......Page 213
Development of a New Positron Emission Mammography (PEM) Masayasu Miyake, Seiichi Yamamoto, Masatoshi Itoh, Kazuaki Kumagai, Takehisa Sasaki, Targino Rodrigues Dos Santos, Manabu Tashiro, Mamoru Baba......Page 214
2. PEM Development and Applications......Page 215
3.1. PEM Simulator......Page 216
3.2. Large Area PEM Detector Unit......Page 217
References......Page 218
1. Introduction......Page 220
2.1. Subjects and Image Acquisition......Page 221
2.2. Image Analysis......Page 222
2.3. Graph-theoretical ‘Small-world’ Analysis of the Age Decades in Each Gender......Page 223
Acknowledgments......Page 224
References......Page 225
SECTION 3: NANO-BIODEVICES......Page 226
1. Introduction......Page 228
3. RT Walker......Page 230
4. Experiments for Environmentally-adaptive Functions......Page 231
5. Conclusion......Page 236
References......Page 237
New Objective Assessment of Acoustic Transfer Function via Patulous Eustachian Tube Using Time-Stretched Pulse Tetsuaki Kawase, Yoko Hori, Yasushi Baba, Toshimitsu Kobayashi, Shuichi Sakamoto, Yôichi Suzuki......Page 238
2.1. System......Page 239
2.3. Measurement in Clinical Cases......Page 241
3.1. Model Study......Page 242
3.2. Clinical Cases......Page 243
4. Discussion......Page 244
References......Page 245
1. Introduction......Page 248
2. Bionic Fuel Cell......Page 249
3. Electrodes Preparation......Page 250
4. Microfluidic Biofuel Cell......Page 251
5. Automatic Air Valve......Page 254
References......Page 256
1. Introduction......Page 258
2. Structure and Principle of the Tactile Sensor......Page 259
3. Theoretical Analysis......Page 261
4. Experiments......Page 263
5. Results......Page 264
References......Page 266
1. Introduction......Page 268
2. Design of the Retinal Prosthesis Chip......Page 271
3. Fabrication and Evaluation of the Retinal Prosthesis Module......Page 272
4. Fabrication and Evaluation of the Coil......Page 278
5. Conclusion......Page 282
References......Page 283
1. Introduction......Page 284
2.1. Principle......Page 286
2.3. Examples of Chemical Images......Page 288
3.1. Principle......Page 289
3.2. Chemical Image Scanner......Page 291
4. Summary......Page 292
References......Page 293
1. Introduction......Page 294
2.1. Mobile Base Module......Page 296
2.2. Lifter Module......Page 297
2.3. Connecting Module......Page 299
References......Page 300
1. Introduction......Page 302
2.2. Pixel Circuit......Page 304
3. Experimental Results......Page 306
References......Page 308
1. Introduction......Page 310
2.1. Design of Si Neural Probe Using an Equivalent Circuit Model......Page 312
2.2. Fabrication of Si Neural Probe......Page 315
3.1. Impedance Measurement of Fabricated Si Neural Probe......Page 316
3.2. Recording Neuronal Action Potentials Using the Si Neural Probe......Page 317
4. Si Double-sided Neural Probe......Page 318
5. Conclusions......Page 319
References......Page 320
1. Introduction......Page 322
2. Methods......Page 323
3.1. EABR Waveform Recording System......Page 324
3.2. EABR Input/output Characteristics......Page 325
3.3. Electrophysiological Mapping of the Cochlear Nucleus Using the 260 Channel Microelectrode System......Page 326
References......Page 327
1. Introduction......Page 328
2. Sensory Test of QQ Feeling......Page 329
3. Tactile Sensor System and Signal Processing......Page 330
4.1. Experiment 1......Page 332
4.2. Experiment 2......Page 334
References......Page 336
SECTION 4: NANO-BIOINTERVENTION......Page 338
1. Introduction......Page 340
2. Optical Tweezers......Page 341
3.1. 6-DOF Manipulation of Microobject [6]......Page 342
3.3. Local pH Measurement with Functional Gel-tool [5]......Page 343
References......Page 344
1. Introduction......Page 346
2.1. MMT Fabrication......Page 348
2.2. Actuation of the MMT......Page 349
3.1. Sort Automation with Image Processing......Page 350
References......Page 351
1. Introduction......Page 352
2.1. Laser Micro-irradiation System......Page 355
2.3.1. BRCA1 accumulation at the laser-irradiated site is a response to DNA SSBs......Page 356
2.3.3. Requirement of other DNA repair factor for the BRCA1 accumulation of at SSBs......Page 357
2.3.5. Discussion......Page 358
3. BRCA1 Response to Local UV Irradiation......Page 359
5. Conclusion......Page 360
References......Page 361
1. Introduction......Page 364
2.1. FES......Page 365
2.3. Impedance and Optimal Coupling Coefficient......Page 366
2.4. Experiment and Results......Page 368
3.1. Purpose and Outline......Page 369
3.2. Experiment and Results......Page 371
4. Conclusion......Page 372
References......Page 373
Development of Bio-Imaging with Functional Nano-Objects Noriaki Ohuchi, Masaaki Kawai, Yuu Sakurai, Hideo Higuchi, Yoshio Kobayashi, Kohsuke Gonda, Motohiro Takeda......Page 374
1. Introduction......Page 375
2.1.2. Cell culture and animal preparation......Page 376
2.1.3. Measurement setup and detection of single particle movement......Page 377
2.2.3. Optical system with a confocal microscope......Page 378
3.1. Nano-scale Measurement of Fluorescent Nano-Particles in Tumors......Page 379
3.2. Imaging of Cancer Metastasis in Living Tumor......Page 380
3.3. Contrast Enhancement of a Tumor by Novel X–ray Contrast Media......Page 381
4. Discussion......Page 382
5. Conclusions......Page 383
References......Page 384
1. Introduction......Page 386
2.1. Completely Implantable Artificial Sphincter......Page 387
2.2. Artificial Esophagus......Page 388
2.3. Peristalsis Stent with Hyperthermia Function......Page 389
2.4. Undulation Pump VAD Project......Page 390
2.6. Artificial Myocardium Using Nanotechnology......Page 391
2.7. Brain Function Control Units......Page 393
3. Diagnose the Baroreflex Sensitivity of an Artery......Page 394
3.1. Diagnosis of Arterial Baroreflex Sensitivity......Page 395
3.2. Animal Experiments......Page 396
3.3. Clinical Application......Page 397
References......Page 398
1. Introduction......Page 400
2. Arterial Pulse Waveform......Page 401
3. Overview of the Pulse Diagnosis Machine......Page 403
4. Methodology of Analyzing the Time Series Data......Page 407
5. Time Series Data Analysis for the Evaluation of the Baroreflex......Page 408
6. Autogenic Training......Page 409
References......Page 410
1. Introduction......Page 412
2.1.1. Conventional detection methods......Page 413
2.2.1. Mutual information......Page 414
2.2.2. c2-statistic......Page 416
2.3. Signal Processing of Animal Experiment......Page 417
3.1. Time Course of Indices of Independence......Page 418
3.2. ROC Curve and ROC Area......Page 420
4.2. Why Correlation Coefficient Was Unstable......Page 421
5. Conclusion......Page 422
References......Page 423
Quantitative Evaluation of Effects of Visually Induced Motion Sickness Using Photoplethysmography Makoto Abe, Makoto Yoshizawa, Norihiro Sugita, Akira Tanaka, Shigeru Chiba, Tomoyuki Yambe, Shin-Ichi Nitta......Page 424
2. Methods......Page 425
3. Experiments......Page 427
5.1. Experiment I (Valsalva maneuver)......Page 428
5.2. Experiment II (Presentation of the Swaying Video Image)......Page 430
Acknowledgment......Page 431
References......Page 432
Sentinel Lymph Node Biopsy and Mapping by Silica-Coated Fluorescent Beads Liman Cong, Motohiro Takeda, Mika Watanabe, Yoshio Kobayashi, Masaki Kobayashi, Noriaki Ohuchi......Page 434
1. Introduction......Page 435
2.4. Instrumentation......Page 436
3. Results and Discussion......Page 437
References......Page 438
1. Introduction......Page 440
2.1. Fluorescent Beads and Quantum Dots......Page 441
2.3. In vivo Imaging Systems......Page 442
3.2. Mean Square Displacements (MSDs), Velocities and Diffusion Coefficients in Different Regions of Tumors......Page 443
Acknowledgments......Page 444
References......Page 445
1. Introduction......Page 446
2.2. Implantation of UPVAD......Page 447
2.3. Experimental Protocol......Page 448
2.4. Analytical Method......Page 449
4. Discussion......Page 450
Acknowledgments......Page 451
References......Page 452
Fabrication of Transparent Arteriole Membrane Models Takuma Nakano, Seiichi Ikeda, Toshio Fukuda, Takehisa Matsuda, Makoto Negoro, Fumihito Arai......Page 454
1. Introduction......Page 455
2. Evaluation of Wax + PVA Mixture Material......Page 457
3. Fabrication of Arteriole Membrane Models......Page 458
References......Page 459
1. Introduction......Page 462
2.1. Basic Characteristics of the Fibre......Page 464
2.2. Conceptual Structure of the Artificial Myocardium......Page 466
2.3. Animal Experiments......Page 467
3. Results and Discussion......Page 468
References......Page 470
1. Introduction......Page 472
2.2. BRCA1 Accumulation at Laser-irradiated Sites is a Response to DNA DSBs......Page 474
2.3. BRCA1 Localizes at DSBs Via Its N- and C-terminal Regions......Page 475
3. Discussion......Page 476
References......Page 477
Author Index......Page 480