Multi-Physics Modeling of Technological Systems

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The development of mechatronic and multidomain technological systems requires the dynamic behavior to be simulated before detailed CAD geometry is available. This book presents the fundamental concepts of multiphysics modeling with lumped parameters. The approach adopted in this book, based on examples, is to start from the physical concepts, move on to the models and their numerical implementation, and finish with their analysis. With this practical problem-solving approach, the reader will gain a deep understanding of multiphysics modeling of mechatronic or technological systems – mixing mechanical power transmissions, electrical circuits, heat transfer devices and electromechanical or fluid power actuators. Most of the book's examples are made using Modelica platforms, but they can easily be implemented in other 0D/1D multidomain physical system simulation environments such as Amesim, Simulink/Simscape, VHDL-AMS and so on.

Author(s): Marc Budinger, Ion Hazyuk, Clément Coïc
Series: Systems and Industrial Engineering Series
Publisher: Wiley-ISTE
Year: 2019

Language: English
Pages: 382

Cover......Page 1
Multi-Physics Modeling of
Technological Systems
......Page 3
Copyright Page......Page 4
Contents......Page 5
Foreword......Page 11
1. Role of Simulation in the Design Cycle of Complex Technological Systems......Page 13
1.1. Approach to the design of complex systems......Page 14
1.1.1. Engineering activities in the design cycle......Page 15
1.1.2. Modeling and simulation roles in the design cycle......Page 16
1.1.3. Validation and verification......Page 25
1.2.1. Modeling principles......Page 26
1.2.2. Approaches and analysis tools......Page 28
1.2.4. Problem-based approach......Page 29
Learning outcomes......Page 31
2.1.1. From mechanical systems to mechatronic systems......Page 32
2.1.2. Modeling levels in the design of mechatronic systems......Page 34
2.2.1. Lumped parameters......Page 35
2.2.2. Port and causality notions......Page 36
2.2.3. Kirchhoff’s laws and network approach......Page 39
2.2.5. Types of generic elements......Page 42
2.3.1. Description of the system and of modeled domains......Page 46
2.3.2. Domains and elements used for modeling......Page 47
2.3.3. Incremental modeling......Page 49
2.3.5. Transient control and simulations......Page 51
2.4.1. Revision of Kirchhoff’s laws in multi-domain modeling......Page 52
2.4.2. Questions related to the power window system example......Page 54
2.4.3. Multiple-choice questions related to the modeling of technological components......Page 56
2.5.1. Analysis of the conditioning electronics of a pressure sensor......Page 58
2.5.2. Modeling the power transmission of an electric scooter......Page 61
2.5.3. Modeling a hydraulic actuation system for launcher thrust vector control......Page 65
2.5.4. Electromagnetic interferences......Page 70
3. Setting Up a Lumped Parameter Model......Page 77
3.1.1. Chapter objectives and approach......Page 78
3.1.2. Problem under study......Page 79
3.1.3. Importance of the type of excitation......Page 80
3.2.1. Systematic setup of domains and effects......Page 81
3.2.2. From geometry to network......Page 82
3.3.1. Incremental modeling by increasing complexity......Page 85
3.3.2. Model reduction by activity index analysis......Page 89
3.3.3. Model reduction by design of the experiment or by comparison of effects......Page 92
3.4. Introductory exercises related to setting up models with lumped parameters......Page 95
3.4.1. Building up analytical skills......Page 96
3.4.2. Geometry/network link: power steering analysis......Page 100
3.4.3. Systematic analysis of effects: analysis of a direct injection system by common rail......Page 103
3.5.1. Thermal response of a TGV motor – deductive approach......Page 105
3.5.2. Modeling of a power steering torque sensor – geometry analysis......Page 107
3.5.3. Calculation of the short-circuit torque of a submarine propulsion motor – model reduction......Page 111
4. Numerical Simulation of Multi-Physics Systems......Page 115
4.1.1. Mathematical models – various systems of equations......Page 116
4.1.2. Advantages of integration......Page 119
4.1.3. Various representations of a system of equations......Page 122
4.2.1. Causality......Page 124
4.2.2. Reaching consistency......Page 125
4.2.3. Bond graph modeling......Page 129
4.3.1. Review and definitions......Page 136
4.3.2. Separate steps methods......Page 137
4.3.3. Linked steps methods......Page 141
4.4.1. Model representativity......Page 143
4.4.3. System initialization......Page 145
4.4.5. Observation errors......Page 146
4.5.1. Revision of various modeling methods......Page 147
4.5.2. Causality studies and associated modifications......Page 148
4.6. Problem......Page 150
5. Dynamic Performance Analysis Tools......Page 152
5.1. Dynamic performance indicators......Page 153
5.2. Laplace transform and transfer functions......Page 159
5.3. Stability of linear dynamic systems......Page 169
5.4.1. First-order systems......Page 178
5.4.2. Second-order systems......Page 187
5.4.3. Model reduction......Page 196
5.5.1. Dynamic performances......Page 207
5.5.2. Transfer functions......Page 211
5.5.3. Stability......Page 213
5.5.4. Model reduction......Page 216
5.5.5. First-order systems......Page 222
5.5.6. Second-order systems......Page 224
Learning outcomes......Page 228
6.1.2. Case study......Page 229
6.2.1. Variational equivalents of network approaches in mechanics......Page 231
6.2.2. Systems with several degrees of freedom......Page 234
6.2.3. Multi-domain systems......Page 237
6.3.1. Equations of piezoelectricity......Page 239
6.3.2. Equivalent model of piezoelectric ceramics......Page 242
6.3.3. Modelica implementation......Page 244
6.4.1. Presentation of actuators and modeling hypotheses......Page 246
6.4.2. Turns ratio......Page 247
6.4.3. Modelica implementation......Page 248
6.5.2. Modeling......Page 250
6.6.1. Actuator presentation......Page 253
6.6.2. Modeling......Page 254
6.6.3. Modelica implementation......Page 258
6.7.1. Principle of virtual works: scissor mechanism......Page 260
6.7.2. Energies and co-energies: electromagnetic power-off brakes......Page 261
6.7.3. Lagrange equation: modeling of a personal transporter......Page 264
6.8.1. Modeling of the mechanical efforts in a car steering system......Page 266
6.8.2. High bandwidth fast steering mirror......Page 268
Learning outcomes......Page 272
7.1.2. Advantages of fluid power use......Page 273
7.2. Presentation of a helicopter actuation system......Page 274
7.3.1. Fluid model requirements......Page 276
7.3.2. Mass density modeling......Page 278
7.3.5. Properties modeling by tables......Page 279
7.4.1. R element......Page 280
7.4.3. I element......Page 281
7.5.1. Modeling of hydraulic fluid storage......Page 282
7.5.2. Modeling of hydraulic power generation......Page 283
7.5.3. Modeling of the hydraulic power distribution......Page 285
7.5.4. Modeling of hydraulic power modulation......Page 286
7.5.5. Modeling of hydraulic power transformation......Page 288
7.6.1. Modelica model of an actuation system......Page 289
7.6.2. Variation of performances depending on temperature......Page 290
7.6.3. Variation of performances depending on antagonist load......Page 292
7.7.1. Multiple-choice questions on the modeling of hydraulic components......Page 293
7.7.2. Problem 1: simple modeling of a hydraulic servo valve......Page 295
7.7.3. Problem 2: modeling of the pressure regulator......Page 298
8.1. Heat exchangers......Page 303
8.1.1. Classification of heat exchangers......Page 304
8.1.2. Objectives of the study......Page 306
8.2. Effectiveness-based thermal modeling of heat exchangers. Constant effectiveness......Page 308
8.3. Estimation of the heat exchanger effectiveness......Page 312
8.4. Estimation of the global heat transfer coefficient of a heat exchanger......Page 318
8.5. Estimation of the pressure drops (losses) in the heat exchangers......Page 328
8.6.1. Sizing of a heat exchanger with concentric tubes......Page 332
8.6.2. Sizing and modeling of a heat exchanger for the recovery of thermal energy in a double flow CMV......Page 333
Learning outcomes......Page 336
9.1. Several examples of heat engines......Page 337
9.2.1. Fluid modeling......Page 340
9.2.2. Modeling of thermodynamic processes......Page 343
9.3.1. First law of thermodynamics......Page 344
9.3.2. Thermodynamic cycles......Page 346
9.4. Modeling of the components of heat engines......Page 350
9.4.1. Modeling of a turbine......Page 351
9.4.2. Modeling of a compressor......Page 354
9.5. Simulation of a thermal power plant......Page 358
9.6.2. Efficiency of a gas turbine......Page 361
9.6.4. Simulation of a heat pump......Page 363
References......Page 366
Index......Page 370
Other titles from iSTE in Systems and Industrial Engineering – Robotics......Page 373