Moonshine beyond the Monster: The Bridge Connecting Algebra, Modular Forms and Physics

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Moonshine forms a way of explaining the mysterious connection between the monster finite group and modular functions from classical number theory. The theory has evolved to describe the relationship between finite groups, modular forms and vertex operator algebras. Moonshine Beyond the Monster, the first book of its kind, describes the general theory of Moonshine and its underlying concepts, emphasising the interconnections between modern mathematics and mathematical physics. Written in a clear and pedagogical style, this book is ideal for graduate students and researchers working in areas such as conformal field theory, string theory, algebra, number theory, geometry, and functional analysis. Containing over a hundred exercises, it is also a suitable textbook for graduate courses on Moonshine and as supplementary reading for courses on conformal field theory and string theory.

Author(s): Terry Gannon
Series: Cambridge Monographs on Mathematical Physics
Publisher: Cambridge University Press
Year: 2006

Language: English
Pages: 477
Tags: Математика;Общая алгебра;

Half-title......Page 3
Series-title......Page 4
Title......Page 5
Copyright......Page 6
Dedication......Page 7
Contents......Page 9
Acknowledgements......Page 15
0.1 Modular functions......Page 17
0.2 The McKay equations......Page 19
0.3 Twisted #0: the Thompson trick......Page 20
0.4 Monstrous Moonshine......Page 21
0.5 The Moonshine of E and the Leech......Page 22
0.6 Moonshine beyond the Monster......Page 24
0.7 Physics and Moonshine......Page 25
0.9 The book......Page 27
1.1 Discrete groups and their representations......Page 30
1.1.1 Basic definitions......Page 31
1.1.2 Finite simple groups......Page 33
1.1.3 Representations......Page 36
1.1.4 Braided #1: the braid groups......Page 42
1.2.1 Lattices......Page 45
1.2.2 Manifolds......Page 48
1.2.3 Loops......Page 56
1.3 Elementary functional analysis......Page 60
1.3.1 Hilbert spaces......Page 61
1.3.2 Factors......Page 65
1.4 Lie groups and Lie algebras......Page 68
1.4.1 Definition and examples of Lie algebras......Page 69
1.4.2 Their motivation: Lie groups......Page 71
1.4.3 Simple Lie algebras......Page 75
1.5.1 Definitions and examples......Page 81
1.5.2 The structure of simple Lie algebras......Page 84
1.5.3 Weyl characters......Page 89
1.5.4 Twisted #1: automorphisms and characters......Page 94
1.5.5 Representations of Lie groups......Page 98
1.6.1 General philosophy......Page 103
1.6.2 Braided monoidal categories......Page 104
1.7.1 Algebraic numbers......Page 111
1.7.2 Galois......Page 114
1.7.3 Cyclotomic fields......Page 117
2.1.1 The hyperbolic plane......Page 120
2.1.2 Riemann surfaces......Page 126
2.1.3 Functions and differential forms......Page 132
2.1.4 Moduli......Page 135
2.2.1 Definition and motivation......Page 142
2.2.2 Theta and eta......Page 147
2.2.3 Poisson summation......Page 151
2.2.4 Hauptmoduls......Page 154
2.3.1 Dirichlet series......Page 156
2.3.2 Jacobi forms......Page 158
2.3.3 Twisted #2: shifts and twists......Page 160
2.3.4 The remarkable heat kernel......Page 163
2.3.5 Siegel forms......Page 166
2.4.1 Automorphic forms......Page 170
2.4.2 Theta functions as matrix entries......Page 175
2.4.3 Braided #2: from the trefoil to Dedekind......Page 180
2.5.1 Twenty-four......Page 184
2.5.2 A–D–E......Page 185
3.1.1 Central extensions......Page 192
3.1.2 The Virasoro algebra......Page 196
3.2.1 Motivation......Page 203
3.2.2 Construction and structure......Page 205
3.2.3 Representations......Page 208
3.2.4 Braided #3: braids and affine algebras......Page 216
3.2.5 Singularities and Lie algebras......Page 220
3.2.6 Loop groups......Page 222
3.3 Generalisations of the affine algebras......Page 224
3.3.1 Kac–Moody algebras......Page 225
3.3.2 Borcherds' algebras......Page 228
3.3.3 Toroidal algebras......Page 231
3.3.4 Lie algebras and Riemann surfaces......Page 232
3.4.1 Twisted #3: twisted representations......Page 234
3.4.2 Denominator identities......Page 236
3.4.3 Automorphic products......Page 239
4 Conformal field theory: the physics of Moonshine......Page 242
4.1.1 Nonrelativistic classical mechanics......Page 243
4.1.2 Special relativity......Page 249
4.1.3 Classical field theory......Page 253
4.2 Quantum physics......Page 256
4.2.1 Nonrelativistic quantum mechanics......Page 257
4.2.2 Informal quantum field theory......Page 268
4.2.3 The meaning of regularisation......Page 286
4.2.4 Mathematical formulations of quantum field theory......Page 287
4.3 From strings to conformal field theory......Page 292
4.3.1 String theory......Page 293
4.3.2 Informal conformal field theory......Page 296
4.3.3 Monodromy in CFT......Page 306
4.3.4 Twisted #4: the orbifold construction......Page 308
4.3.5 Braided #4: the braid group in quantum field theory......Page 311
4.4.1 Categories......Page 314
4.4.2 Groups are decorated surfaces......Page 319
4.4.3 Topological field theory......Page 321
4.4.4 From amplitudes to algebra......Page 324
5.1.1 Vertex operators......Page 327
5.1.2 Formal power series......Page 328
5.1.3 Axioms......Page 333
5.2 Basic theory......Page 339
5.2.1 Basic definitions and properties......Page 340
5.2.2 Examples......Page 341
5.3 Representation theory: the algebraic meaning of Moonshine......Page 345
5.3.1 Fundamentals......Page 346
5.3.2 Zhu's algebra......Page 349
5.3.3 The characters of VOAs......Page 353
5.3.4 Braided #5: the physics of modularity......Page 355
5.3.5 The modularity of VOA characters......Page 358
5.3.6 Twisted #5: twisted modules and orbifolds......Page 361
5.4.1 Vertex operator algebras and Riemann surfaces......Page 364
5.4.2 Vertex operator superalgebras and manifolds......Page 367
6.1.1 Fusion rings......Page 370
6.1.2 Modular data......Page 375
6.1.3 Modular invariants......Page 377
6.1.4 The generators and relations of RCFT......Page 378
6.2.1 Affine algebras......Page 384
6.2.2 Vertex operator algebras......Page 391
6.2.3 Quantum groups......Page 394
6.2.4 Twisted #6: finite group modular data......Page 397
6.2.5 Knots......Page 399
6.2.6 Subfactors......Page 402
6.3.2 Complex multiplication and Fermat......Page 408
6.3.3 Braided # 6: the absolute Galois group......Page 411
7.1 The Monstrous Moonshine Conjectures......Page 418
7.1.1 The Monster revisited......Page 419
7.1.2 Conway and Norton's fundamental conjecture......Page 423
7.1.3 E8 and the Leech......Page 424
7.1.4 Replicable functions......Page 425
7.2 Proof of the Monstrous Moonshine conjectures......Page 428
7.2.1 The Moonshine module V......Page 429
7.2.2 The Monster Lie algebra m......Page 431
7.2.3 The algebraic meaning of genus 0......Page 432
7.2.4 Braided #7: speculations on a second proof......Page 435
7.3.1 Mini-Moonshine......Page 438
7.3.2 Twisted #7: Maxi-Moonshine......Page 440
7.3.3 Why the Monster?......Page 442
7.3.5 Modular Moonshine......Page 444
7.3.6 McKay on Dynkin diagrams......Page 446
7.3.7 Hirzebruch's prize question......Page 447
7.3.8 Mirror Moonshine......Page 448
7.3.9 Physics and Moonshine......Page 449
Epilogue, or the squirrel who got away?......Page 451
Notation......Page 452
References......Page 461
Index......Page 480