From artificial surfaces to living cells, Molecular Nano Dynamics, Vol. I and Vol. II explores more than 40 important methods for dynamic observation of the nanoscale. Edited by absolute science greats from Japan, this two-volume set covers all important aspects of this topic: nanoscale spectroscopy and characterization tools, nanostructure dynamics, single living cell dynamics, active surfaces, and single crystals. Destined to be the definitive reference work on nanoscale molecular dynamics and their observation for years to come, this is a must-have reference for chemists, physicists, physical chemists, theoretical chemists, and materials scientists.
Author(s): Hiroshi Fukumura, Masahiro Irie, Yasuhiro Iwasawa, Hiroshi Masuhara, Kohei Uosaki
Edition: 1
Year: 2009
Language: English
Pages: 740
Tags: Специальные дисциплины;Наноматериалы и нанотехнологии;Методы исследования наноматериалов;
Molecular Nano Dynamics......Page 5
Preface......Page 19
About the Editors......Page 21
List of Contributors for Both Volumes......Page 25
Volume I: Spectroscopic Methods and Nanostructures......Page 1
Contents to Volume 1......Page 7
Part One: Spectroscopic Methods for Nano Interfaces......Page 35
1.1 Introduction......Page 37
1.2.1 Raman Spectroscopy......Page 38
1.3 Theoretical Approaches......Page 40
1.4.1 STM Combined with Raman Spectroscopy......Page 42
1.4.2 STM Combined With Fluorescence Spectroscopy......Page 46
1.5 Future Prospects......Page 47
References......Page 50
2.1 Introduction......Page 53
2.2 Surface Plasmon Polaritons......Page 54
2.3 Near-Field Optical Microscopy Using a Metallic Nano-Tip......Page 56
2.4 Tip-Enhanced Near-Field Raman Spectroscopy and Imaging......Page 58
2.4.2 Near-Field Nano-Raman Microscopy......Page 59
2.4.3 Tip-Enhanced Near-Field Raman Spectroscopy and Imaging......Page 60
2.5 Tip Effect on Near-Field Raman Scattering......Page 64
References......Page 70
3.1 Introduction......Page 73
3.2 Near-Field Spectroscopic Method......Page 74
3.4 Wavefunction Images of Plasmon Modes of Gold Nanorod — Near-Field Transmission Method......Page 76
3.5 Ultrafast Time-Resolved Near-Field Imaging of Gold Nanorods......Page 79
3.6 Near-Field Two-Photon Excitation Images of Gold Nanorods......Page 81
3.7 Enhanced Optical Fields in Spherical Nanoparticle Assemblies and Surface Enhanced Raman Scattering......Page 82
3.8 Concluding Remarks......Page 85
References......Page 86
4.1 Introduction......Page 89
4.2.2 Near-Field Optical Microscopy......Page 90
4.2.3 Structure of a Single Polymer Chain......Page 92
4.3.2 Fluorescence Depolarization Method......Page 95
4.3.3 Dynamics of a Polymer Brush......Page 97
4.4 Summary......Page 101
References......Page 102
5.1 Introduction......Page 105
5.2.1 Brief Description of SFG......Page 106
5.2.2 Origin of SFG Process......Page 107
5.2.3 SFG Spectroscopy......Page 108
5.2.4.1 Laser and Detection Systems......Page 111
5.2.4.2 Spectroscopic Cells......Page 112
5.3.2 Results and Discussion......Page 114
5.3.3 Conclusions......Page 117
5.4.1 Introduction......Page 118
5.4.2 Results and Discussion......Page 119
5.4.3 Conclusions......Page 122
5.5.1 Introduction......Page 123
5.5.2 Results and Discussions......Page 124
5.5.3 Conclusions......Page 126
5.6.2 Enhancement of Hyper-Raman Scattering Intensity......Page 128
5.7 General Conclusion......Page 130
References......Page 131
6.1 Why Buried Interfaces?......Page 137
6.2 Optical Transitions......Page 138
6.3 Experimental Scheme......Page 140
6.4 Application to a Liquid Surface......Page 141
6.5 Application to a Liquid/Liquid Interface......Page 142
6.6 Applications to Solid Surfaces......Page 143
6.7 Frequency Domain Detection......Page 146
References......Page 147
7.1.1 Weak Force Measurements......Page 151
7.1.2 Potential Analysis Method Using Photon Force Measurement......Page 152
7.2.1 Two-Beam Photon Force Measurement System......Page 155
7.2.2 Potential Analysis Method for Hydrodynamic Force Measurement......Page 156
7.2.3 Trapping Potential Analysis......Page 158
7.3 Kinetic Potential Analysis......Page 159
7.4 Summary......Page 163
References......Page 164
8.2 Development of a Near-Infrared 35 fs Laser Microscope and its Application to Higher Order Multiphoton Excitation......Page 167
8.2.1 Confocal Microscope with a Chromium: Forsterite Ultrafast Laser as an Excitation Source......Page 168
8.2.2 Detection of Higher Order Multiphoton Fluorescence from Organic Crystals......Page 169
8.2.3 Multiphoton Fluorescence Imaging with the Near-Infrared 35 fs Laser Microscope......Page 171
8.3.1 Experimental System of FCS......Page 173
8.3.2 The Principle of the Method of Measurement of Local Temperature Using FCS......Page 174
8.3.3 Measurement of Local Temperature for Several Organic Solvents......Page 175
8.3.4 Summary......Page 180
8.4.1 Samples and Analysis of Experimental Data Obtained with FCS......Page 181
8.4.2 Non-Emissive Relaxation Dynamics in CdTe Quantum dots......Page 182
8.5 Summary......Page 184
References......Page 186
9.1 Introduction......Page 189
9.2 Nonlinear Optical Properties of CdTe QDs......Page 190
9.3 Optical Trapping of CdTe QDs Probed by Nonlinear Optical Properties......Page 192
9.4 Single Particle Spectroscopy of CdTe QDs......Page 196
9.5 Summary......Page 200
References......Page 201
Part Two Nanostructure Characteristics and Dynamics......Page 205
10.1 Introduction......Page 207
10.2.1 Significance of Photochemical Reactions......Page 208
10.2.3 Polymers with Spatially Graded Morphologies Designed from Photo-Induced Interpenetrating Polymer Networks (IPNs)......Page 209
10.2.4 Designing Polymers with an Arbitrary Distribution of Characteristic Length Scales by the Computer-Assisted Irradiation (CAI) Method......Page 211
10.2.5 Reversible Phase Separation Driven by Photodimerization of Anthracene: A Novel Method for Processing and Recycling Polymer Blends......Page 215
10.3 Concluding Remarks......Page 218
References......Page 219
11.1 Self-Organization and Self-Assembly......Page 221
11.2 Dissipative Structures......Page 223
11.3 Dynamics and Pattern Formation in Evaporating Polymer Solutions......Page 225
11.4 Applications of Dewetted Structures in Organic Photonics and Electronics......Page 230
References......Page 232
12.1 Introduction......Page 237
12.2 Position-Selective Arrangement of Nanosize Polymer Microspheres Onto a PS-b-P4VP Diblock Copolymer Film with Nanoscale Sea–island Microphase Structure......Page 239
12.3.2 Nanoscale Surface Morphological Change of PS-b-P4VP Block Copolymer Films Induced by Site-Selective Doping of a Photoactive Chromophore......Page 242
12.4 Site-Selective Modification of the Nanoscale Surface Morphology of Dye-Doped Copolymer Films Using Dopant-Induced Laser Ablation......Page 245
12.5 Photon Antibunching Behavior of Organic Dye Nanocrystals on a Transparent Polymer Film......Page 251
References......Page 255
13.1.1 Lipid Bilayer and its Fluidic Nature......Page 259
13.1.2 Controlling Molecular Diffusion in the Fluidic Lipid Bilayer......Page 261
13.1.3 Self-Spreading of a Lipid Bilayer or Monolayer......Page 263
13.1.4 Controlling the Self-Spreading Dynamics......Page 264
13.1.5 Molecular Manipulation on the Self-Spreading Lipid Bilayer......Page 267
13.2 Summary......Page 269
References......Page 270
14.1 Introduction......Page 273
14.2 Dynamic Self-Organization in Electrochemical Reaction Systems......Page 274
14.3 Oscillatory Electrodeposition......Page 275
14.3.1 Formation of a Layered Nanostructure of Cu–Sn Alloy......Page 276
14.3.2 Layered Nanostructures of Iron-Group Alloys......Page 280
14.3.3 Layered Nanostructure of Cu/Cu2O......Page 281
14.3.4 Nanostructured Metal Filaments......Page 284
14.4 Raman Microspectroscopy Study of Oscillatory Electrodeposition of Au at an Air/Liquid Interface......Page 286
14.5 Summary......Page 289
References......Page 290
15.1 Introduction......Page 293
15.2.1 Magnetic Orientation and Organization of SWNTs or their Composite Materials Using Polymer Wrapping......Page 294
15.2.2 Effects of Magnetic Processing on the Morphological, Electrochemical, and Photoelectrochemical Properties of Electrodes Modified with C60-Phenothiazine Nanoclusters......Page 298
15.2.3 Effects of Magnetic Processing on the Luminescence Properties of Monolayer Films with Mn2þ-Doped ZnS Nanoparticles......Page 302
15.3.1 Magnetic Field Effects on the Dynamics of the Radical Pair in a C60 Clusters–Phenothiazine System......Page 304
15.3.2 Magnetic Field Effects on Photoelectrochemical Reactions of Electrodes Modified with the C60 Nanocluster-Phenothiazine System......Page 306
References......Page 308
16.1.1 Self-Assembled Monolayers......Page 313
16.1.2 Preparation of Gradient Surfaces......Page 314
16.1.3 Spontaneous Motion of a Droplet on Wetting Gradients......Page 315
16.1.4 Surface Switching......Page 316
16.2.1 Ratchet Motion of a Droplet on Asymmetric Electrodes......Page 318
16.2.2 Ratchet Motion of a Droplet Caused by Dynamic Motions of the Wetting Boundary......Page 319
16.3 Conclusion......Page 323
References......Page 325
17.1 Introduction......Page 327
17.2.1.1 Synthesis of CdSe Quantum Dots from Dimethyl Cadmium......Page 329
17.2.2 Synthesis of Water-Soluble Quantum Dots......Page 330
17.3 Bandgap Structure and Photoluminescence of CdSe Quantum Dots......Page 332
17.4 Photoluminescence Spectral Shifts......Page 333
17.4.1 Physical Effects on Spectral Shifts......Page 334
17.4.2 Chemical Effects on Spectral Shifts......Page 335
17.5 Enhancement of Photoluminescence in CdSe Quantum Dots......Page 337
17.6 On and Off Luminescence Blinking in Single Quantum Dots......Page 340
17.6.2 Modified Blinking......Page 342
References......Page 346
Volume II: Active Surfaces, Single Crystals and Single Biocells......Page 349
Contents to Volume 2......Page 355
Part Three Active Surfaces......Page 383
18.1 Introduction......Page 385
18.2.2 Computational Methods......Page 386
18.3.1 Dynamic Mechanism for Catalytic Dehydration of Formic Acid on a TiO2(110) Surface, Much Different from the Traditional Static Acid Catalysis......Page 387
18.3.2 Dynamic Catalytic Dehydrogenation of Formic Acid on a TiO2(110) Surface......Page 395
18.3.2.1 Mechanism of the Switchover of Reaction Paths......Page 399
18.4 Conclusion and Perspective......Page 400
References......Page 401
19.1 Introduction......Page 405
19.2.1.1 Principles......Page 406
19.2.1.2 Experimental Set-Up......Page 407
19.2.2.1 Principles and Brief History......Page 408
19.2.2.2 Experimental Set-Up......Page 409
19.3.1 Alkali Atom Desorption from a Metal Surface......Page 411
19.3.2 Solvation Dynamics at Metal Surfaces......Page 412
19.4.1 Vibrational Coherence and Coherent Phonons at Alkali-Covered Metal Surfaces......Page 413
19.4.2 Dephasing of the Vibrational Coherence: Excitation Fluence Dependence......Page 415
19.4.3 Excitation Mechanisms......Page 417
19.4.4 Mode Selective Excitation of Coherent Surface Phonons......Page 419
19.5 Concluding Remarks......Page 420
References......Page 421
20.1.1 Introduction......Page 425
20.1.2 Molecular Orbital Theory and Band Theory......Page 426
20.1.3 Charge Transfer vs. Charge Transport......Page 427
20.1.4 Electronic Excitation......Page 429
20.1.5 Reaction Dynamics......Page 431
20.2.1 Nonequilibrium Green's Function Formalism......Page 433
20.2.2 Efficient MO Approach......Page 435
20.2.3 Ab Initio Calculations: Single Molecular Conductance and Waveguide Effects......Page 438
20.2.4 Inelastic Transport and Inelastic Electron Tunneling Spectroscopy......Page 443
20.3.1 Theoretical Model of Hot Electron Transport and Reaction Probability......Page 449
20.3.2 Photodesorption Mechanism of Nitric Oxide on an Ag(111) Surface......Page 452
20.4 Summary and Outlook......Page 460
References......Page 462
21.1.1 NOx Reduction Technologies for Diesel and Lean-Burn Gasoline Engines......Page 469
21.1.2 Selective Catalytic Reduction of NOx by Hydrocarbons Over Ag/Al2O3......Page 470
21.2.1 Boosting of HC-SCR Activity of Ag/Al2O3 by Addition of H2......Page 471
21.2.2 Surface Dynamics of Ag Species Analyzed by in situ UV–Vis......Page 473
21.3.1 Reaction Scheme of HC-SCR Over Ag/Al2O3......Page 478
21.3.2 Effect of H2 Addition on Reaction Pathways of HC-SCR Over Ag/Al2O3......Page 482
21.4.1 Debates on Role of Ag Clusters......Page 484
21.4.2 Reductive Activation of O2 and Promoted HC-SCR on Ag Cluster......Page 488
References......Page 490
22.1 Introduction......Page 495
22.2 Formation and Structure of Highly Dispersed PdO Interacted with Brønsted Acid Sites......Page 496
22.3 Energy-Dispersive XAFS Studies on the Spontaneous Dispersion of PdO and Reversible Formation of Stable Pd Clusters in H-ZSM-5 and H-Mordenite......Page 498
22.4 In Situ QXAFS Studies on the Dynamic Coalescence and Dispersion Processes of Pd in USY Zeolite......Page 500
22.5 Time-Resolved EXAFS Measurement of the Stepwise Clustering Process of Pd Clusters at Room Temperature......Page 503
22.6 Summary......Page 506
References......Page 507
Part Four Single Crystals......Page 509
23.1 Introduction......Page 511
23.3 X-Ray Crystallographic Analysis......Page 512
23.4 Reactivity in the Crystal......Page 515
23.5 Photomechanical Effect......Page 516
23.6 Crystal Surface Changes......Page 517
23.7 Photoreversible Crystal Shape Changes......Page 518
References......Page 522
24.1.1 Crystal Engineering Renaissance......Page 527
24.2.1 Model of Photoisomerization......Page 528
24.2.2 Photoisomerization of Benzyl Muconate......Page 530
24.2.3 Change in Crystal Structures During Photoisomerization......Page 531
24.3.2 [2 + 2] Photodimerization of Benzyl Muconates......Page 533
24.4.1 Features of Topochemical Polymerization......Page 537
24.4.2 Monomer Stacking Structure and Polymerization Reactivity......Page 538
24.4.3 Shrinking and Expanding Crystals......Page 541
24.4.4 Accumulation and Release of Strain During Polymerization......Page 542
24.4.5 Homogeneous and Heterogeneous Polymerizations......Page 544
24.5 Conclusion......Page 548
References......Page 549
25.1 Introduction......Page 555
25.2 Photochromism of Rhodium Dithionite Complexes......Page 556
25.3.1 Dynamics of Molecular Structural Changes in Single Crystals......Page 558
25.3.2 Dynamics of Reaction Cavities in a Crystalline-State Reaction......Page 563
25.3.3 Dynamics of Surface Morphology Changes of Photochromic Single Crystals......Page 566
25.4 Summary......Page 567
References......Page 568
26.1 Introduction......Page 573
26.2.1 Guest-Responsive Molecular Assemblies......Page 574
26.2.2 Intercalation in Steroidal Bilayer Crystals......Page 576
26.2.3 Guest Fit Through Weak Non-Covalent Bonds......Page 578
26.3.1 Solid-State Fluorescence Emission......Page 580
26.3.2 Hydrogen Bond Clusters......Page 582
26.4.1 Hierarchical Structures with Supramolecular Chirality......Page 584
26.4.2.1 Three-Axial Chirality......Page 585
26.4.2.2 Tilt Chirality......Page 586
26.4.2.3 Helical and Bundle Chirality in a 21 Assembly......Page 587
26.4.3 Supramolecular Chirality of Hydrogen Bonding Networks......Page 588
26.4.4 Expression of Molecular Information......Page 590
References......Page 591
27.1 Introduction......Page 595
27.2.1 Solid-State Photocylization......Page 596
27.2.2 Crystal Structures and the Reaction Mechanism......Page 597
27.2.3 Morphology Changes in Bulk Crystals......Page 599
27.2.4 Morphology Changes in Microcrystals......Page 600
27.2.5 Correlation between the Morphology Changes and the Crystal Strucural Changes......Page 603
27.3.1 Solid-State Photocyclization and the Crystal Structures......Page 605
27.3.2 Morphology Changes......Page 607
References......Page 609
Part Five Single Biocells......Page 613
28.1 Introduction......Page 615
28.2 Femtosecond Laser Ablation and Generated Impulsive Force in Water: Laser Tsunami......Page 616
28.2.1 Manipulation of a Single Polymer Bead by Laser Tsunami......Page 619
28.2.2 Manipulation of Single Animal Cells by Laser Tsunami......Page 622
28.2.3 Modification and Regeneration Process in Single Animal Cells by Laser Tsunami......Page 624
28.2.4 Injection of Nanoparticles into Single Animal Cells by the Laser Tsunami......Page 626
28.3 Development of Rayleigh Light Scattering Spectroscopy/Imaging System and its Application to Single Animal Cells......Page 629
28.4 Summary......Page 633
References......Page 634
29.1.2 Super-Resolution Microscopy by Two-Color Double Resonance Spectroscopy......Page 639
29.1.3 Transient Fluorescence Detected IR Spectroscopy......Page 640
29.1.4 Application to Super-Resolution Infrared Microscopy......Page 641
29.2.2.1 Optical Layout for the Solution and Fluorescent Beads......Page 642
29.2.2.2 Optical Layout for Biological Samples......Page 643
29.3.1 Transient Fluorescence Image with IR Super-Resolution in Solution......Page 644
29.3.2 Picosecond Time-Resolved Measurement......Page 646
29.3.3 Application to Fluorescent Beads......Page 647
29.3.4.1 Super-Resolution IR Imaging of Arabidopsis thaliana Roots......Page 649
29.3.4.2 Vibrational Relaxation Dynamics in the Cells......Page 650
29.4 Summary......Page 652
References......Page 653
30.1.1 Thylakoid Membranes of Oxygenic Photosynthesis......Page 657
30.1.4 Applications of Fluorescence Microscopy to a Thylakoid Membrane......Page 658
30.1.5 Simultaneous Spectral Imaging and its Merits......Page 659
30.2.1 Realization of Fast Broadband Spectral Acquisition in Two-Photon Excitation Fluorescence Imaging......Page 660
30.2.2.2 Stability of the Anabaena Fluorescence Spectra Under Photoautotrophic Conditions......Page 662
30.2.2.3 Change of the Anabaena Fluorescence Spectra by Dark Conditions......Page 663
30.2.2.4 Intracellular Spectral Gradient in Anabaena Cells......Page 664
30.2.3.1 Chloroplasts from a Plant, Zea mays......Page 666
30.2.3.2 Chloroplast from the Green Alga, Chlorella......Page 668
30.3 Technical Verification and Perspective......Page 669
30.4 Summary......Page 670
References......Page 672
31.1 Introduction......Page 675
31.2.1 FLIM Measurement System......Page 676
31.2.3 Measurements of External Electric Field Effects......Page 678
31.3.1 FLIM of Hb. salinarum......Page 679
31.3.2 pH Dependence of the Fluorescence Lifetime in Solution and in Living Cells......Page 682
31.3.3 External Electric Field Effect on Fluorescence of BCECF......Page 684
31.3.4 Electric-Field-Induced Aggregate Formation in Hb. salinarum......Page 685
References......Page 687
32.1 Introduction......Page 691
32.2.1 Time-Gated Excitation–Emission Matrix Spectroscopy......Page 693
32.2.2 Time- and Spectrally-Resolved Fluorescence Imaging......Page 694
32.2.3 PARAFAC Model......Page 696
32.3.1 The 3D Fluorescence Properties of Dye Solutions......Page 698
32.3.2 The 3D Fluorescence Property of a Mixed Solution......Page 699
32.3.3 PARAFAC Decomposition Without any Prior Knowledge of Constituents......Page 701
32.4.1 Characterization of γ–Em Maps......Page 703
32.4.3 PARAFAC Decomposition......Page 705
32.4.4 Possible Assignments of Fluorescent Components......Page 707
32.5 Concluding Remarks......Page 708
References......Page 710
33.1.1 Investigation on Biological System Based on Molecular Identification and Visualization......Page 713
33.1.2.1 Spatial Resolution......Page 715
33.1.3 Time and Space Resolution Required to Observe Anomalous Diffusion of a Single Molecule in Biological Tissues......Page 716
33.1.4 General Importance of Anomalous Diffusion in a Signaling Reaction......Page 720
33.2.1 Use of FCS for Biological Systems......Page 723
33.2.2 Experimental Example of Anomalous Diffusion Observed in a Model System for Extracellular Matrices......Page 724
33.2.3 Quantitative Estimation of Reaction Volume in Signaling Reaction......Page 729
33.3.1 FCS Measurement Inside Single Cells......Page 730
33.4 Summary......Page 732
References......Page 733
34.1.1 Spectroscopic Properties of Gold Nanorods......Page 737
34.1.2 Biocompatible Gold Nanorods......Page 738
34.2.1 Gold Nanorods Targeting Tumor Cells......Page 742
34.2.2 Spectroscopy of Gold Nanorods In Vivo......Page 743
34.3 Photoreactions of Gold Nanorods for Biochemical Applications......Page 748
34.4 Conclusions and Future Outlook......Page 750
References......Page 751
35.1.1 Single Cell Analysis......Page 757
35.1.2 Dynamic Motion of Murine Embryonic Stem Cell......Page 758
35.2.1 Optical Tweezers......Page 759
35.2.2 Set-up for Optical Trapping of a Living Cell......Page 760
35.2.3 Murine Embryonic Stem Cell Trapped with Optical Tweezers......Page 761
35.3.1 Dynamic Motion of a Murine Embryonic Stem Cell......Page 762
35.3.2 Experimental Procedure......Page 763
35.4.1 Cell Separation......Page 767
35.5 Summary......Page 768
References......Page 769
Index......Page 771