During the past decade, there has been tremendous progress in maize biotechnology. This volume provides an overview of our current knowledge of maize molecular genetics, how it is being used to improve the crop, and future possibilities for crop enhancement. Several chapters deal with genetically engineered traits that are currently, or soon will be, in commercial production. Technical approaches for introducing novel genes into the maize genome, the regeneration of plants from transformed cells, and the creation of transgenic lines for field production are covered. Further, the authors describe how molecular genetic techniques are being used to identify genes and characterize their function, and how these procedures are utilized to develop elite maize germplasm. Moreover, molecular biology and physiological studies of corn as a basis for the improvement of its nutritional and food-making properties are included. Finally, the growing use of corn as biomass for energy production is discussed.
Author(s): Alan L. Kriz, Brian A. Larkins
Edition: 1
Year: 2008
Language: English
Pages: 392
Contents......Page 7
Part I: Introduction......Page 21
1. Molecular Genetic Approaches to Maize Improvement – an Introduction......Page 22
References......Page 25
2.1 Introduction......Page 26
2.2 Maize Plant Regeneration Systems......Page 27
2.3 Maize Transformation Systems......Page 31
2.4 Selectable Marker Systems......Page 35
2.5 Marker-Free Transformation......Page 37
2.6 Future Prospects: Bigger and Better......Page 39
References......Page 42
Part II: Transgenic Traits......Page 47
3.1 Introduction......Page 48
3.2 The Nature of Bt Corn Technologies......Page 49
3.3 Adoption of Bt Corn Technologies and Their Impact on Insecticide Use......Page 50
3.4 The Economic Impact of Bt Corn......Page 52
3.5 The Impact of Bt Corn on Grain Quality......Page 53
3.6 The Environmental Impact of Bt Corn......Page 54
3.7 Conclusions......Page 55
References......Page 56
4.1 Introduction......Page 58
4.2 Phytic Acid Synthesis, Breakdown and Storage......Page 60
4.3 Seed Total P......Page 64
4.4 Conclusion......Page 67
References......Page 68
5.1 Introduction......Page 71
5.2 Prospects for Improving Plant Stress Tolerance Through Genetics......Page 72
5.3 Physiological/Developmental Framework for Assessing the Role and Potential Utility of Genes and Traits for Drought Tolerance......Page 74
5.4 Identification and Testing Gene/Trait Leads for Drought Tolerance......Page 75
5.5 Deployment of Drought Tolerance Genes and Genotype......Page 78
References......Page 79
6.1 The Importance of Improving Nitrogen Use Efficiency and a Biotechnology Approach......Page 81
6.2 The Biology of Maize NUE......Page 82
6.3 Candidate Genes for Enhancing Maize NUE......Page 87
6.4 Commercialization of Maize Hybrids with Improved NUE......Page 89
References......Page 92
7.1 Introduction......Page 94
7.2 Increased Lysine Accumulation Through Deregulation of Metabolic Pathways......Page 95
7.3 Modification of Corn Grain Protein Profiles......Page 96
7.4 Expression of Lysine-rich Proteins in Corn Grain......Page 101
References......Page 102
8.1 Introduction......Page 105
8.2 Expression Technology......Page 106
8.3 Production......Page 111
8.4 Examples of Products......Page 114
References......Page 115
9.1 Regulatory Oversight of Transgenic Maize......Page 120
9.2 Scientific Assessment of Risks Associated with Transgenic Maize......Page 123
9.3 Discussion and Conclusions......Page 133
References......Page 135
Part III: Breeding and Genetics......Page 138
10.1 Introduction......Page 139
10.2 History......Page 140
10.3 Methods......Page 142
10.4 Chromosome Doubling......Page 145
10.5 Advantages......Page 146
10.6 Future Perspectives......Page 149
References......Page 150
11.1 Introduction......Page 155
11.2 General Strategies for Transposon Tagging......Page 156
11.3 Directed Tagging......Page 158
11.4 Non-directed Tagging......Page 161
11.5 Reverse Genetics Resources......Page 163
References......Page 167
12.2 EMS Mutagenesis......Page 172
12.3 TILLING......Page 175
12.4 Targeted Resequencing Using Massively Parallel Strategies: TRUMPing TILLING......Page 179
References......Page 181
13.1 Introduction......Page 183
13.2 What is Linkage Disequilibrium and How is it Related to Association Mapping Studies......Page 184
13.3 Association Populations and Statistics......Page 187
13.4 False Positives and Power of Association......Page 193
13.5 Phenotyping and Genotyping Strategies for Association Testing......Page 195
13.6 Association Mapping in Crop Plants......Page 197
13.7 Conclusions......Page 199
References......Page 200
14.1 Introduction......Page 206
14.2 Genetic Stocks......Page 207
14.3 Other Maize Germplasm......Page 212
14.4 Conclusions......Page 214
References......Page 215
Part IV: The Corn Genome......Page 219
15.1 Introduction......Page 220
15.2 The Gold Standard of Genome Sequence......Page 221
15.3 Fractionation Methods of the Maize Genome......Page 222
15.4 Distribution of Methylated and Repetitive DNA in the Maize Genome......Page 223
15.5 One Hundred Random Regions of the Maize Genome......Page 224
15.6 Physical Map of the Maize Genome......Page 225
15.8 Diploidization of the Maize Genome......Page 227
15.9 Retrotransposition......Page 228
15.10 Chromosome Expansion and Contraction......Page 229
15.11 Orthologous and Paralogous Gene Copies......Page 231
15.12 Haplotype Variation......Page 232
References......Page 234
16.1 Utility of Molecular Markers......Page 238
16.2 Molecular Markers......Page 239
16.3 Maize Mapping Populations......Page 242
16.4 Genetic Maps of Maize......Page 243
References......Page 244
17.1 Chromosome Analysis on Mitotic Chromosome by FISH......Page 248
17.2 Histones, ChIP, Genes and Histones......Page 249
17.3 Centromere Cytogenetics......Page 250
17.4 Minichromosomes – Using Cytogenetics to Produce a Better Vector......Page 251
References......Page 253
18.1 Introduction......Page 257
18.2 Global Transcript Analysis......Page 263
18.3 MicroRNA Profiling......Page 267
References......Page 268
Part V: Molecular Biology and Physiological Studies......Page 273
19.1 Introduction......Page 274
19.2 Storage Proteins in the Maize Kernel......Page 275
19.3 High Lysine Corn and the Development of Quality Protein Maize......Page 284
19.4 Future Perspectives......Page 286
References......Page 287
20.1 Introduction......Page 292
20.2 The Starch Biosynthetic Pathway......Page 293
20.3 Adenosine Diphosphate Glucose Pyrophosphorylase (AGPase)......Page 294
20.4 Starch Synthases (SS)......Page 298
20.5 Starch Branching Enzymes (SBE)......Page 300
20.6 Starch Debranching Enzymes (DBE)......Page 301
References......Page 303
21.1 Introduction......Page 307
21.2 Background......Page 308
21.3 Breeding for High Oil......Page 310
21.4 Synthesis of Oil in the Kernel......Page 312
21.6 Conclusions......Page 320
References......Page 322
22.1 Introduction......Page 328
22.2 Size, Form, and Genomic Map of cpDNA......Page 329
22.3 Replication of cpDNA......Page 334
22.4 Plastid Development in Maize......Page 336
22.5 Strategies for Engineering the Chloroplast......Page 341
References......Page 343
Part VI: Biomass and Energy......Page 347
23. Ethanol Production from Maize......Page 348
23.2 Maize as a Feedstock for Ethanol Production......Page 349
23.3 Ethanol Production from Corn Grain......Page 351
23.4 Ethanol Production from Corn Cob and Corn Stover......Page 356
23.5 Comparison of Ethanol Yields for Conversion of Starch, By-products, and Corn Stover......Page 360
References......Page 363
C......Page 366
I......Page 367
O......Page 368
S......Page 369
Z......Page 370