For upper level undergraduate and graduate level courses in electrical engineering, as well as a reference book for professionals and researchers. This text presents the basics of electrical power conversion and control through the use of power semiconductor switches. In addition, by demonstrating the practical applications of power electronics and motion control using AC electrical machines in transportation and industry, among other uses, Modern Power Electronics and AC Drives reflects the latest advances in industrial automation.
Author(s): Bimal K. Bose
Edition: 1
Publisher: Prentice Hall PTR
Year: 2002
Language: English
Pages: 738
Tags: Приборостроение;Силовая электроника;
Preface......Page 19
List of Principal Symbols......Page 21
1.1 Introduction......Page 25
1.2 Diodes......Page 26
1.3 Thyristors......Page 28
1.3.1 Volt Ampere Characteristics......Page 29
1.3.3 Power Loss and Thermal Impedance......Page 30
1.4 Triacs......Page 32
1.5 Gate Turn-Off Thyristors (GTOs)......Page 34
1.5.1 Switching Characteristics......Page 35
1.6 Bipolar Power or Junction Transistors (BPTs or BJTs)......Page 38
1.7.2 Safe Operating Area (SOA)......Page 41
1.8 Static Induction Transistors (SITs)......Page 43
1.9 Insulated Gate Bipolar Transistors (IGBTs)......Page 44
1.9.1 Switching Cgaracteristics and Thermal Impedance......Page 46
1.10 MOS-Controlled Thyristors (MCTs)......Page 48
1.11 Integrated Gate-Commutated Thyristors (IGCTs)......Page 49
1.13 Power Integrated Circuits (PICs)......Page 50
1.14 Summary......Page 51
2.1 Introduction......Page 53
2.2.1 Rotating Magnetic Field......Page 54
2.2.2 Torque Production......Page 57
2.2.3 Equivalent Circuit......Page 59
2.2.4 Torque-Speed Curve......Page 63
2.2.6 Variable-Voltage, Constant-Frequency Operation......Page 66
2.2.7 Variable-Frequency Operation......Page 67
2.2.8 Constant Volts/Hz Operation......Page 68
2.2.9 Drive Operating Regions......Page 70
2.2.10 Variable Stator Current Operation......Page 71
2.2.11.1 Harmonic Heating......Page 73
2.2.11.3 Torque Pulsation......Page 77
2.2.12 Dynamic d-q Model......Page 80
2.2.12.1 Axes Transformation......Page 81
2.2.12.2 Synchronously Rotating Reference Frame - Dynamic Model (Kron Equation)......Page 87
2.2.12.3 Stationary Frame - Dynamic Model (Stanley Equation)......Page 91
2.2.12.4 Dynamic Model State-Space Equations......Page 94
2.3.1 Wound Field Machine......Page 98
2.3.1.1 Equivalent Circuit......Page 100
2.3.1.2 Developed Torque......Page 103
2.3.1.3 Salient Pole Machine Characteristics......Page 104
2.3.1.4 Dynamic d-q Machine Model (Park Model)......Page 107
2.3.3.1 Permanent Magnet Materials......Page 110
2.3.3.3 Sinusoidal Interior Magnet Machine (IPM)......Page 113
2.3.3.4 Trapezoidal Surface Magnet Machine......Page 117
2.4 Variable Reluctance Machine (VRM)......Page 118
2.5 Summary......Page 120
3.1 Introduction......Page 123
3.2.1 Single-Phase Bridge - R, RL Load......Page 124
3.2.2 Effect of Source Inductance......Page 127
3.2.3 Single-Phase Bridge - RL, CEMF Load......Page 128
3.2.4 Single-Phase Bridge - CR Load......Page 129
3.2.5 Distortion, Displacement, and Power Factors......Page 131
3.2.7 Displacement Power Factor (DPF)......Page 132
3.2.9 Three-Phase Full Bridge - RL Load......Page 133
3.3.1 Single-Phase Bridge - RL, CEMF Load......Page 136
3.3.2 Discontinuous Conduction......Page 142
3.3.4 Three-Phase, Half-Wave Converter......Page 146
3.3.5 Analysis for Line Leakage Inductance (Lc)......Page 148
3.3.6 Three-Phase Bridge Converter......Page 152
3.3.7 Discontinuous Conduction......Page 156
3.3.9 Six-Pulse, Center-Tap Converter......Page 160
3.3.10 12-Pulse Converter......Page 161
3.3.11 Concurrent and Sequential Control of bridge Converters......Page 164
3.4 Converter Control......Page 165
3.4.2 Cosine Wave Crossing Control......Page 166
3.4.3 Phase-Locked Oscillator Principle......Page 169
3.5.1 EMI Problems......Page 172
3.5.2 Line Harmonic Problems......Page 173
3.6 Summary......Page 175
4.1 Introduction......Page 177
4.2.1 Operation Principles......Page 178
4.2.2 A Three-Phase Dual Converter as Cycloconverter......Page 180
4.2.3.1 Three-Phase, Half-Wave Cycloconverter......Page 182
4.2.3.2.1 Modulation Factor......Page 185
4.2.4.1 Circulating Current Mode......Page 186
4.2.4.2 Blocking Mode......Page 189
4.2.5.1 Load Voltage Harmonics......Page 191
4.2.6 Line Displacement Power Factor......Page 195
4.2.6.1 Theoretical Derivation of Line DPF......Page 197
4.2.7 Control of Cycloconverter......Page 201
4.2.8.2 Asymmetrical Firing Angle Control......Page 204
4.2.8.3 Circulating Current Control......Page 207
4.3 Matrix Converters......Page 209
4.4 High-Frequency Cycloconverters......Page 210
4.4.2.1 Sinusoidal Supply......Page 211
4.4.2.2 Quasi-Square-Wave Supply......Page 212
4.5 Summary......Page 213
5.1 Introduction......Page 215
5.2.1 Half-Bridge and Center-Tapped Inverters......Page 216
5.2.2 Full, or H-Bridge, Inverter......Page 217
5.2.2.1 Phase-Shift Voltage Control......Page 219
5.3.1 Square-Wave, or Six-Step, Operation......Page 221
5.3.2 Motoring and Regenerative Modes......Page 225
5.3.3 Input Ripple......Page 226
5.3.5 Phase-Shift Voltage Control......Page 227
5.3.6 Voltage and Frequency Control......Page 229
5.4 Multi-Stepped Inverters......Page 230
5.4.1 12-Step Inverter......Page 231
5.4.2 18-Step Inverter by Phase-Shift Control......Page 232
5.5.1.1 PWM Classification......Page 234
5.5.1.1.1 Sinusoidal PWM......Page 235
5.5.1.1.2 Selected Harmonic Elimination PWM......Page 242
5.5.1.1.3 Minimum Ripple Current PWM......Page 247
5.5.1.1.4 Space-Vector PWM......Page 248
5.5.1.1.6 Hysteresis-Band Current Control PWM......Page 260
5.5.1.1.7 Sigma-Delta Modulation......Page 263
5.6 Three-Level Inverters......Page 264
5.6.1 Control of Neutral Point Voltage......Page 267
5.7 Hard Switching Effects......Page 269
5.8 Resonant Inverters......Page 271
5.9.1.1 Inverter Circuits......Page 273
5.10.2 Regenerative Braking......Page 277
5.11.1.1 Single-Phase......Page 279
5.11.1.2 Three-Phase......Page 281
5.11.2.2 Three-Phase......Page 282
5.12 Static VAR Compensators and Active Harmonic Filters......Page 285
5.13 Introduction to Simulation - MATLAB/SIMULINK......Page 288
5.14 Summary......Page 291
6.2 General Operation of Six-Step Thyristor Inverter......Page 295
6.2.1.1 Mode 1: Load-Commutated Rectifier......Page 298
6.2.1.4 Mode 4: Force-Commutated Rectifier......Page 300
6.3.1 Single-Phase Resonant Inverter......Page 301
6.3.1.1 Circuit Analysis......Page 302
6.3.2.1 Lagging Power Factor Load......Page 305
6.3.2.2 Over-Excited Synchronous Machine Load......Page 306
6.3.2.3 Synchronous Motor Starting......Page 307
6.4.1 Auto-Sequential Current-Fed Inverter (ASCI)......Page 309
6.5 Harmonic Heating and Torque Pulsation......Page 311
6.6 Multi-Stepped Inverters......Page 313
6.7.1 Six-Step Inverter......Page 314
6.7.1.1 Load Harmonic Resonance Problem......Page 317
6.7.2 PWM Inverters......Page 318
6.7.2.1 Trapezoidal PWM......Page 319
6.7.2.2 Selected Harmonic Elimination PWM (SHE-PWM)......Page 320
6.7.3 Double-Sided PWM Converter System......Page 323
6.7.4.1 Static VAR Compensator/Active Filter......Page 326
6.8 Current-Fed vs. Voltage-Fed Converters......Page 327
6.9 Summary......Page 329
7.1 Introduction......Page 331
7.3 Static Kramer Drive......Page 332
7.3.1 Phasor Diagram......Page 337
7.3.2 AC Equivalent Circuit......Page 340
7.3.3 Torque Expression......Page 343
7.3.4 Harmonics......Page 345
7.3.6 Power Factor Improvement......Page 346
7.4 Static Scherius Drive......Page 348
7.4.1 Modef of Operation......Page 350
7.4.2 Modified Scherbius Drive for VSCF Power Generation......Page 352
7.5 Summary......Page 355
8.1 Introduction......Page 357
8.2 Induction Motor Control with Small Signal Model......Page 358
8.2.1 Small-Signal Model......Page 359
8.3 Scalar Control......Page 362
8.3.1.1 Open Loop Volts/Hz Control......Page 363
8.3.1.3 Speed Control with Slip Regulation......Page 366
8.3.1.4 Speed Control with Torque and Flux Control......Page 369
8.3.1.5 Current-Controlled Voltage-Fed Inverter Drive......Page 370
8.3.1.6 Traction Drives with Parallel Machines......Page 372
8.3.2.1 Independent Current and Frequency Control......Page 374
8.3.2.2 Speed and Flux Control in Current-Fed Inverter Drive......Page 375
8.3.3 Efficiency Optimization Control by Flux Program......Page 376
8.4.1 DC Drive Analogy......Page 380
8.4.2 Equivalent Circuit and Phasor Diagram......Page 382
8.4.3 Principles of Vector Control......Page 383
8.4.4 Direct or Feedback Vector Control......Page 384
8.4.5.1 Voltage Model......Page 387
8.4.5.2 Current Model......Page 390
8.4.6 Indirect or Feedforward Vector Control......Page 392
8.4.6.1 Indirect Vector Control Slip Gain (Ks) Tuning......Page 399
8.4.7 Vector Control of Line-Side PWM Rectifier......Page 402
8.4.8 Stator Flux-Oriented Vector Control......Page 405
8.4.9 Vector Control of Current-Fed Inverter Drive......Page 408
8.4.10 Vector Control of Cycloconverter Drive......Page 409
8.5.1.1 Slip Calculation......Page 412
8.5.1.2 Direct Synthesis from State Equations......Page 413
8.5.1.3 Model Referencing Adaptive System (MRAS)......Page 414
8.5.1.4 Speed Adaptive Flux Observer (Luenberger Observer)......Page 416
8.5.1.5 Extended Kalman Filter (EKS)......Page 420
8.5.1.7 Injection of Auxiliary Signal on Salient Rotor......Page 423
8.5.2.1 Programmable Cascaded Low-Pass Filter (PCLPF) Stator Flux Estimation......Page 425
8.5.2.2 Drive Machine Start-up with Current Model Equations......Page 428
8.6.1 Torque Expression with Stator and Rotor Fluxes......Page 432
8.6.2 Control Strategy of DTC......Page 434
8.7 Adaptive Control......Page 437
8.7.1 Self-Tuning Control......Page 438
8.7.1.1 Load Torque Disturbance (Tl) Compensation......Page 439
8.7.2 Model Referencing Adaptive Control (MRAC)......Page 440
8.7.3.1 Control Principle......Page 443
8.7.3.2 Sliding Trajectory Control of a Vector Drive......Page 448
8.8 Self-Commissioning of Drive......Page 454
8.9 Summary......Page 459
9.1 Introduction......Page 463
9.2.1 Open Loop Volts/Hertz Control......Page 464
9.2.2 Self-Control Model......Page 468
9.2.3.1 Optical Encoder......Page 470
9.2.3.2 Analog Resolver with Decoder......Page 472
9.2.4 Vector Control......Page 473
9.2.4.1 Field-Weakening Mode......Page 475
9.3 Synchronous Reluctance Machine Drives......Page 479
9.3.1 Current Vector Control of SyRM Drive......Page 481
9.3.1.1 Constant d - Axis Current Control......Page 482
9.3.1.2 Fast Torque Response Control......Page 483
9.3.1.4 Maximum Power Factor Control......Page 487
9.4.1 Current Vector Control with Maximum Torque/Ampere......Page 489
9.4.2 Field-Weakening Control......Page 492
9.4.3 Vector Control with Stator Flux Orientation......Page 495
9.4.3.1 Feedback Signal Processing......Page 501
9.4.3.2 Square-Wave (SW) Mode Field-Weakening Control......Page 503
9.4.3.3 PWM - Square-Wave Sequencing......Page 506
9.5.1 Drive Operation with Inverter......Page 507
9.5.1.1 Angle Switch-on Mode......Page 509
9.5.2 Torque-Speed Curve......Page 510
9.5.3 Machine Dynamic Model......Page 513
9.5.4.1 Close Loop Speed Control in Feedback Mode......Page 514
9.5.4.2 Close Loop Current Control in Freewheeling Mode......Page 516
9.5.5 Torque Pulsation......Page 517
9.5.6 Extended Speed Operation......Page 518
9.6.1 Brush and Brushless dc Excitation......Page 519
9.6.2 Load-Commutated Inverter (LCI) Drive......Page 520
9.6.2.1 Control of LCI Drive with Constant Angle......Page 522
9.6.2.2 Delay angle or Angle control......Page 525
9.6.2.3 Control with Machine Terminal Voltage Signals......Page 528
9.6.2.4 Phase-Locked Loop (PLL) Angle Control......Page 530
9.6.3 Scalar Control of Cycloconverter Drive......Page 531
9.6.4 Vector Control of Cycloconverter......Page 534
9.6.5 Vector Control with Voltage-Fed Inverter......Page 537
9.7.1.1 Terminal Voltage Sensing......Page 539
9.7.1.2 Stator Third Harmonic Voltage Detection......Page 543
9.7.2.1 Terminal Voltage and Current Sensing......Page 546
9.7.2.2 Inductance Variation (sailency) Effect......Page 548
9.7.2.3 Extended Kalman Filter (EKF)......Page 550
9.8 Switched Reluctance Motor (SRM) Drives......Page 553
9.9 Summary......Page 556
10.1 Introduction......Page 559
10.2 Expert System Principles......Page 560
10.2.1 Knowledge Base......Page 561
10.2.1.1 Frame Structure......Page 563
10.2.1.3 ES Language......Page 564
10.2.3 User Interface......Page 565
10.3.2 External Interface......Page 567
10.3.3 Program Development Steps......Page 568
10.5 Application......Page 570
10.5.2 Fault Diagnostics......Page 571
10.5.4 Configuration Selection, Design, and Simulation of a Drive System......Page 573
10.5.4.2 Motor Ratings Design......Page 574
10.5.4.3 Converter Design......Page 576
10.5.4.4 Control Design and Simulation Study......Page 578
10.6 Glossary......Page 579
10.7 Summary......Page 580
11.1 Introduction......Page 583
11.2 Fuzzy Sets......Page 584
11.2.1 Membership Functions......Page 585
11.2.2 Operations on Fuzzy Sets......Page 588
11.3 Fuzzy System......Page 590
11.3.1.1 Mamdani Type......Page 593
11.3.1.2 Lusing Larson Type......Page 594
11.3.1.3 Sugeno Type......Page 595
11.3.2.1 Center of Area (COA) Method......Page 597
11.3.2.3 Mean of Maxima (MOM) Method......Page 599
11.4.2 Historical Perspective......Page 600
11.4.3 Control Principle......Page 601
11.5 General design Methotology......Page 605
11.6.1 Induction Motor Speed Control......Page 606
11.6.2 Flux Programming Efficiency Improvement of Induction Motor Drive......Page 609
11.6.2.1 Pulsating Torque Compensation......Page 613
11.6.3 Wind Generation System......Page 615
11.6.3.2 System Description......Page 616
11.6.3.3 Fuzzy Control......Page 617
11.6.4 Slip Gain Tuning of Indirect Vector Control......Page 621
11.6.4.1 Derivation of Q and v......Page 622
11.6.5 Stator Resistance Rs Estimation......Page 626
11.6.6 Estimation of Distorted Waves......Page 630
11.7 Fuzzy Logic Toolbox......Page 633
11.6.6.1 Mandami Method......Page 632
11.7.2 Membership Function Editor......Page 635
11.7.4 Rule Viewer......Page 636
11.7.6 Demo Program for Synchronous Current Control......Page 637
11.8 Glossary......Page 643
11.9 Summary......Page 646
12.1 Introduction......Page 649
12.2.1 The Concept of a Biological Neuron......Page 650
12.2.2 Artificial Neuron......Page 651
12.2.2.1 Activation Functions of a Neuron......Page 652
12.3 Artificial Neural Network......Page 653
12.3.2 Training of Feedforward Neural Network......Page 656
12.3.2.2 Alphabet Character Recognition by an ANN......Page 658
12.3.4.1 Weight Calculation for Output Layer Neurons......Page 661
12.3.4.2 Weight Calculation for Hidden Layer Neurons......Page 665
12.3.5 On-Line Training......Page 667
12.4.1 Radial Basis Function Network......Page 668
12.4.2 Kohonen's Self-Organizing Feature Map Network......Page 669
12.4.3 Recurrent Neural Network for Dynamic System......Page 670
12.4.3.1 Training an RNN by EKF Algorithm......Page 671
12.5.2 Dynamic System Models......Page 674
12.5.3 ANN Identification of Dynamic Models......Page 676
12.5.4 Inverse Dynamics Model......Page 678
12.5.5 Neural Network-Based Control......Page 679
12.6 General Design Methodology......Page 681
12.7.1.1 Selected Harmonic Elimination (SHE) PWM......Page 682
12.7.1.2 Instantaneous Current Control PWM......Page 683
12.7.1.3 Space Vector PWM......Page 684
12.7.2 Vector-Controlled Drive Feedback Signal Estimation......Page 691
12.7.3 Estimation of Distorted Waves......Page 694
12.7.4 Model Identification and Adaptive Drive Control......Page 695
12.7.5 Speed Estimation by RNN......Page 699
12.7.6 Adaptive Flux Estimation by RNN......Page 700
12.8.1 Adaptive Network-Based Fuzzy Inference System (ANFIS)......Page 702
12.9.1 Introduction to Neural Network Toolbox......Page 706
12.9.2 Demo Program......Page 707
12.10 Glossary......Page 708
12.11 Summary......Page 713
Index......Page 715