The objective of this two-volume book is the systematic and comprehensive description of the most competitive time-domain computational methods for the efficient modeling and accurate solution of modern real-world EMC problems. Intended to be self-contained, it performs a detailed presentation of all well-known algorithms, elucidating on their merits or weaknesses, and accompanies the theoretical content with a variety of applications. Outlining the present volume, numerical investigations delve into printed circuit boards, monolithic microwave integrated circuits, radio frequency microelectromechanical systems as well as to the critical issues of electromagnetic interference, immunity, shielding, and signal integrity. Biomedical problems and EMC test facility characterizations are also thoroughly covered by means of diverse time-domain models and accurate implementations. Furthermore, the analysis covers the case of large-scale applications and electrostatic discharge problems, while special attention is drawn to the impact of contemporary materials in the EMC world, such as double negative metamaterials, bi-isotropic media, and several others.
Author(s): Kantartzis N.V., TsiboukisT.D.
Year: 2008
Language: English
Pages: 238
Modern EMC Analysis Techniques......Page 2
Keywords......Page 5
Preface......Page 6
Contents......Page 8
1.1 THE PERCEPTION OF MODELING IN THE AREA OF ELECTROMAGNETIC COMPATIBILITY......Page 12
1.2 GENERAL CLASSES OF MODERN EMC PROBLEMS......Page 13
1.4 TIME-DOMAIN METHODS AMENABLE TO EMC ANALYSIS......Page 14
References......Page 15
2.2 MODELING TECHNIQUES FOR PCB PROBLEMS......Page 18
2.2.1 The Finite-Difference Time-Domain Algorithm......Page 19
2.2.2 The Transmission-Line Matrix/Modeling Technique......Page 23
2.2.3 The Pseudospectral Time-Domain Method......Page 26
2.3 CALCULATION OF TRANSMISSION-LINE AND S-PARAMETERS......Page 28
2.4 LOW-PASS SPATIAL FILTERING SCHEMES......Page 29
2.5 DC-POWER BUS CONFIGURATIONS......Page 31
2.6 DECOUPLING DEVICES AND MULTILAYERED SUBSTRATES......Page 34
2.7 SWITCHING INTERCONNECTS AND INTEGRATED VIAS......Page 36
2.8.1 Microstrip Antennas in EMC Arrangements......Page 38
2.8.2 Enhanced Designs With Embedded Circuit Elements......Page 45
2.9 PCBs IN RADIO FREQUENCY MICROELECTROMECHANICAL SYSTEMS......Page 48
References......Page 51
3.1 INTRODUCTION......Page 56
3.2.1 The Finite Integration Technique......Page 57
3.2.2 The Finite-Element Time-Domain Method......Page 59
3.2.3 The Finite-Volume Time-Domain Algorithm......Page 63
3.2.4 The Multiresolution Time-Domain Technique......Page 64
3.3 EMI ANALYSIS AND IMMUNITY TESTING OF ANTENNA STRUCTURES......Page 67
3.3.1 Enhanced-Performance Radiators With a Complex Geometry......Page 68
3.3.2 Antennas in Wireless Local Area Networks......Page 80
3.3.3 Specialized Configurations......Page 86
3.4 SHIELDING APPLICATIONS AND SIGNAL INTEGRITY......Page 90
3.5 EMI INVESTIGATION OF RADIO FREQUENCY MICROELECTROMECHANICAL SYSTEM LAYOUTS......Page 93
References......Page 96
4.1 INTRODUCTION......Page 102
4.2.1.1 The Case of Human Head.......Page 103
4.2.1.2 The Case of Human Body.......Page 104
4.2.2 Frequency-Dependent FDTD Schemes......Page 107
4.3 BIOLOGICAL EFFECTS OF CELLULAR PHONE RADIATION......Page 110
4.3.1 Discrete Models of Various Cellular Phone Types......Page 111
4.3.2 Comparative Study-Numerical Results......Page 113
4.3.3.1 Theoretical Formulation.......Page 123
4.3.3.2 Thermal Simulations.......Page 129
4.4.1.2 Far-field Sources.......Page 131
4.4.2 Thermal Analysis......Page 139
4.5 ACCURACY AND IMPLEMENTATION ASPECTS......Page 141
4.6 OTHER BIOMEDICAL APPLICATIONS......Page 142
References......Page 143
5.1 INTRODUCTION......Page 148
5.2.1 Conventional Algorithm......Page 149
5.2.2 Unconditionally Stable Nonstandard Schemes......Page 151
5.2.2.1 Nonstandard Curvilinear Spatial/Temporal Operators.......Page 152
5.2.2.2 The Generalized ADI-FDTD Method.......Page 155
5.3.1 Open-Area Test Sites......Page 157
5.3.2 Performance Optimization and Basic EMC Quantities......Page 158
5.3.3 Numerical Simulation Premises......Page 161
5.4 ANECHOIC AND SEMIANECHOIC CHAMBERS......Page 163
5.4.1 Models of Different Absorber Linings......Page 164
5.4.2 Wideband Analysis of EMC Anechoic Chambers......Page 166
5.4.3 Efficiency Considerations......Page 177
5.5.1 Basic Configurations......Page 183
5.5.2 Numerical Investigation......Page 184
5.6 TEM AND GTEM CELLS......Page 186
References......Page 188
6.2 HYBRID TIME-DOMAIN SCHEMES WITH OPTIMAL GRIDDING DENSITY......Page 194
6.3 DOMAIN DECOMPOSITION AND INTERFACE BOUNDARY CONDITIONS......Page 197
6.4 INDICATIVE APPLICATION......Page 200
6.6 NUMERICAL VERIFICATION......Page 204
References......Page 206
7.2 DOUBLE-NEGATIVE METAMATERIALS......Page 210
7.2.1 Theoretical Formulation......Page 211
7.2.2 A Generalized Time-Domain Methodology......Page 213
7.2.3 Metamaterial-Based EMC Applications......Page 215
7.2.4.1 Infinite and Finite Planar DNG Slabs.......Page 221
7.2.4.2 Adjustable-Angle Triangular Lossy DNG Slabs.......Page 224
7.3.1 Dispersive FDTD Schemes for Complex Wave Interactions......Page 228
7.3.2 Numerical Simulations......Page 232
7.4 NANOSTRUCTURES AND NANOTECHNOLOGY APPLICATIONS......Page 234
7.5 PERIODIC PHOTONIC CRYSTAL CONFIGURATIONS......Page 237
7.5.1 Propagation Through Dielectric-Rod Photonic Crystals......Page 238
7.5.2 Waveguiding and Power Splitting via Photonic Crystals......Page 240
References......Page 242
Authors Biographies......Page 248