Modern differential geometry in gauge theories. Maxwell fields

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This is original, well-written work of interest Presents for the first time (physical) field theories written in sheaf-theoretic language Contains a wealth of minutely detailed, rigorous computations, ususally absent from standard physical treatments Author's mastery of the subject and the rigorous treatment of this text make it invaluable

Author(s): Mallios A.
Series: Progress in Mathematical Physics
Publisher: Birkhauser
Year: 2006

Language: English
Pages: 303
Tags: Математика;Математическая физика;

Contents......Page 4
General Preface......Page 8
Preface to Volume I......Page 10
Acknowledgements......Page 13
Part I Maxwell Fields: General Theory......Page 17
1 The Differential Setting......Page 18
2 A-Connections......Page 23
3 Induced A-Connections......Page 35
4 Existence of A-Connections. Criteria of Existence......Page 42
5 The Space of A-Connections......Page 45
6 Related A-Connections. Moduli Space of A-Connections......Page 48
7 Curvature......Page 56
8 Fundamental Identities of the Curvature (Continued). Torsion......Page 63
9 A-Connections Compatible with A-Metrics......Page 69
10 The Hodge *-Operator. Volume Form......Page 79
1 Preliminaries. Basic Notions......Page 83
2 Classification of Elementary Particles, Through Vector Sheaves, According to Their Spin-Structures......Page 85
3 Quantum State Modules......Page 88
4 Free Bosons and Fermions in Terms of Finitely Generated Projective Modules......Page 93
5 Finitely Generated Projective Modules and Vector Bundles (Serre–Swan Theory)......Page 95
6 Vector Sheaves and Elementary Particles (Continued: Selesnick's Correspondence)......Page 98
7 Cohomological Classification of Elementary Particles......Page 105
8 Elementary Particles as Principal Sheaves......Page 112
9 Vector Sheaves Associated with Principal Sheaves and Physical Interpretation......Page 116
3 Electromagnetism......Page 126
1 The Electromagnetic Field. The Maxwell Category......Page 127
2 Characterization of the Maxwell Group Through Local Data......Page 131
3 A Natural Fibration......Page 141
4 The Fibration τ as a Group Morphism......Page 160
5 Action of H[sup(1)](X, C[sup(·)]) on the Maxwell Group Φ[sup(1)][sub(A)](X)[sup(∇)]......Page 165
6 The Hermitian Counterpart......Page 181
7 Equivariant Actions of H[sup(1)](X, C[sup(·)]) (Continued)......Page 194
8 The Maxwell Group Φ[sup(1)][sub(A)](X)[sup(∇)] as a Central Extension (Continued)......Page 205
1 Hypercohomology with Respect to a (Differential) A-Complex......Page 209
2 Čech Hypercohomology......Page 218
3 Čech Hypercohomology Relative to a Two-Term A-Complex......Page 222
4 Čech Hypercohomology, with Respect to the Two-Term Z-Complex [equation omitted]......Page 228
5 Cohomological Wording of the Maxwell Group......Page 233
6 Abstract Maxwell Equations......Page 239
7 The Hermitian Analogue......Page 242
1 Symplectic Sheaves......Page 245
2 Prequantizable Symplectic Sheaves......Page 249
3 The Hermitian Framework......Page 254
4 Cohomological Classification of (Abstract) Geometric Prequantizations of Hermitian Maxwell Fields with a Given Field Strength......Page 258
5 Prequantization of Elementary Particles......Page 262
References......Page 285
Index of Notation......Page 292
C......Page 299
G......Page 300
P......Page 301
S......Page 302
W......Page 303