Modeling and simulation of systems using MATLAB and Simulink

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Not only do modeling and simulation help provide a better understanding of how real-world systems function, they also enable us to predict system behavior before a system is actually built and analyze systems accurately under varying operating conditions. Modeling and Simulation of Systems Using MATLAB® and Simulink® provides comprehensive, state-of-the-art coverage of all the important aspects of modeling and simulating both physical and conceptual systems. Various real-life examples show how simulation plays a key role in understanding real-world systems. The author also explains how to effectively use MATLAB and Simulink software to successfully apply the modeling and simulation techniques presented. After introducing the underlying philosophy of systems, the book offers step-by-step procedures for modeling different types of systems using modeling techniques, such as the graph-theoretic approach, interpretive structural modeling, and system dynamics modeling. It then explores how simulation evolved from pre-computer days into the current science of today. The text also presents modern soft computing techniques, including artificial neural networks, fuzzy systems, and genetic algorithms, for modeling and simulating complex and nonlinear systems. The final chapter addresses discrete systems modeling. Preparing both undergraduate and graduate students for advanced modeling and simulation courses, this text helps them carry out effective simulation studies. In addition, graduate students should be able to comprehend and conduct simulation research after completing this book. AncillariesAccompanying CD-ROM includes simulation code in MATLAB and Simulink, enabling quick and useful insight into real-world systems. A solutions manual is available for qualifying instructors.

Author(s): Devendra K. Chaturvedi
Edition: 1 Har/Cdr
Publisher: CRC Press
Year: 2010

Language: English
Pages: 734

Cover......Page 1
Title Page......Page 4
Copyright......Page 5
Contents......Page 8
Preface......Page 18
Acknowledgments......Page 22
Author......Page 24
1.1 System......Page 26
1.1.2 System Components and Their Interactions......Page 28
1.1.3 Environment......Page 29
1.2.1 According to the Time Frame......Page 30
1.2.3 According to the Interactions......Page 31
1.2.5 According to the Uncertainties Involved......Page 32
1.3.1 Superposition Theorem......Page 34
1.3.3 Mathematical Viewpoint of a Linear System......Page 35
1.4 Time-Varying vs. Time-Invariant Systems......Page 37
1.6 Continuous-Time and Discrete-Time Systems......Page 38
1.7.1 Complexity of Systems......Page 40
1.8 Hard and Soft Systems......Page 41
1.11 Introduction to System Philosophy......Page 43
1.11.2 Problems of Science and Emergence of System......Page 45
1.12 System Thinking......Page 46
1.13 Large and Complex Applied System Engineering: A Generic Modeling......Page 49
1.14 Review Questions......Page 54
1.15 Bibliographical Notes......Page 55
2.1 Introduction......Page 56
2.2 Need of System Modeling......Page 58
2.3 Modeling Methods for Complex Systems......Page 59
2.4.1 Physical vs. Abstract Model......Page 60
2.4.2 Mathematical vs. Descriptive Model......Page 61
2.4.7 Continuous vs. Discrete Models......Page 62
2.6 Modeling......Page 63
2.6.2 Component Postulate (First Postulate)......Page 65
2.6.4 Generic Description of Two-Terminal Components......Page 66
2.7 Mathematical Modeling of Physical Systems......Page 68
2.7.1 Modeling of Mechanical Systems......Page 71
2.7.2 Modeling of Electrical Systems......Page 103
2.7.3 Modeling of Electromechanical Systems......Page 109
2.7.4 Modeling of Fluid Systems......Page 112
2.7.5 Modeling of Thermal Systems......Page 117
2.8 Review Questions......Page 124
2.9 Bibliographical Notes......Page 127
3.2 System Components and Interconnections......Page 128
3.3 Computation of Parameters of a Component......Page 130
3.4 Single Port and Multiport Systems......Page 134
3.4.1 Linear Perfect Couplers......Page 135
3.4.3 Multiterminal Components......Page 138
3.5 Techniques of System Analysis......Page 139
3.5.3 Linear Graph Theoretic Approach......Page 140
3.6 Basics of Linear Graph Theoretic Approach......Page 141
3.7 Formulation of System Model for Conceptual System......Page 144
3.7.3 System Postulate......Page 146
3.8 Formulation of System Model for Physical Systems......Page 152
3.9.2 Gyrator......Page 156
3.9.7 Accumulator Type Elements......Page 157
3.9.9 Through Drivers......Page 158
3.10 Development of State Model of Degenerative System......Page 169
3.11 Solution of State Equations......Page 191
3.12 Controllability......Page 205
3.13 Observability......Page 206
3.14 Sensitivity......Page 207
3.15 Liapunov Stability......Page 209
3.16 Performance Characteristics of Linear Time Invariant Systems......Page 211
3.17.2 Algorithm for the Formulation of State Equations......Page 212
3.18 Review Questions......Page 233
3.19 Bibliographical Notes......Page 242
4.1 Introduction......Page 244
4.2 Difference between Model Simplification and Model Order Reduction......Page 245
4.4 Principle of Model Order Reduction......Page 246
4.5.1 Time Domain Simplification Techniques......Page 248
4.5.2 Model Order Reduction in Frequency Domain......Page 259
4.7 Review Questions......Page 298
4.8 Bibliographical Notes......Page 300
5.1.1 D’Alembert’s Principle......Page 302
5.2.1 Rule for Drawing f–v Analogous Electrical Circuits......Page 303
5.3.1 Rule for Drawing f–i Analogous Electrical Circuits......Page 304
5.4 Review Questions......Page 323
6.2 Graph Theory......Page 326
6.2.3 Cycle......Page 330
6.2.5 Properties of Relations......Page 331
6.3 Interpretive Structural Modeling......Page 332
6.4 Review Questions......Page 348
6.5 Bibliographical Notes......Page 350
7.2.1 Counterintuitive Nature of System Dynamics......Page 352
7.3.2 Limitation of the Human Mind......Page 353
7.4.1 Mental Database......Page 354
7.4.3 Numerical Database......Page 355
7.5 Strength of System Dynamics......Page 356
7.7 System Dynamics Technique......Page 357
7.8 Structure of a System Dynamic Model......Page 358
7.9.2 Flow-Rate Variables......Page 359
7.9.3 Decision Function......Page 360
7.10.1 Level Equation......Page 367
7.10.3 Auxiliary Equations......Page 368
7.11.2 Source and Sinks......Page 369
7.12 Dynamo Equations......Page 370
7.13 Modeling and Simulation of Parachute Deceleration Device......Page 401
7.13.1 Parachute Inflation......Page 402
7.13.3 Modeling and Simulation of Parachute Trajectory......Page 403
7.14 Modeling of Heat Generated in a Parachute during Deployment......Page 407
7.14.1 Dynamo Equations......Page 409
7.15 Modeling of Stanchion System of Aircraft Arrester Barrier System......Page 410
7.15.1 Modeling and Simulation of Forces Acting on Stanchion System Using System Dynamic Technique......Page 412
7.15.2 Dynamic Model......Page 414
7.15.3 Results......Page 415
7.16 Review Questions......Page 420
7.17 Bibliographical Notes......Page 424
8.1 Introduction......Page 426
8.2 Advantages of Simulation......Page 427
8.4 Simulation Provides......Page 428
8.6 Application of Simulation......Page 429
8.7 Numerical Methods for Simulation......Page 430
8.7.2 The Trapezoid and Tangent Formulae......Page 431
8.7.3 Simpson’s Rule......Page 432
8.7.5 Runge–Kutta Methods of Integration......Page 435
8.7.6 Runge–Kutta Fourth-Order Method......Page 436
8.7.7 Adams–Bashforth Predictor Method......Page 437
8.9 Comparison of Different Numerical Methods......Page 438
8.10.1 Truncation Error......Page 439
8.10.2 Round Off Error......Page 440
8.10.4 Discretization Error......Page 443
8.11 Review Questions......Page 455
9.1 Introduction......Page 458
9.3 Types of Nonlinearities......Page 459
9.4.2 Principle of Flight Controls......Page 460
9.4.3 Components Used in Pitch Control......Page 462
9.4.4 Modeling of Various Components of Pitch Control System......Page 463
9.4.6 Study of Effects of Different Nonlinearities on Behavior of the Pitch Control Model......Page 465
9.4.7 Designing a PID Controller for Pitch Control in Flight......Page 470
9.4.8 Design of Fuzzy Controller......Page 486
9.4.9 Tuning Fuzzy Controller......Page 494
9.5 Conclusions......Page 498
9.6.2 Scientific Meaning......Page 503
9.6.3 Definition......Page 504
9.7 Historical Prospective......Page 506
9.8 First-Order Continuous-Time System......Page 509
9.9 Bifurcations......Page 512
9.9.2 Transcritical Bifurcation......Page 513
9.9.3 Pitchfork Bifurcation......Page 515
9.9.4 Catastrophes......Page 517
9.10 Second-Order System......Page 518
9.11 Third-Order System......Page 521
9.11.1 Lorenz Equation: A Chaotic Water Wheel......Page 523
9.13 Bibliographical Notes......Page 526
10.1.1 Biological Neuron......Page 528
10.1.2 Artificial Neuron......Page 529
10.2.1 Training Phase......Page 530
10.2.2 Testing Phase......Page 531
10.3 Review Questions......Page 551
11.1 Introduction......Page 552
11.2 Fuzzy Sets......Page 553
11.3 Features of Fuzzy Sets......Page 556
11.4.3 Fuzzy Complement......Page 557
11.4.4 Fuzzy Concentration......Page 558
11.4.5 Fuzzy Dilation......Page 559
11.4.6 Fuzzy Intensification......Page 560
11.4.7 Bounded Sum......Page 561
11.4.8 Strong α-Cut......Page 562
11.4.9 Linguistic Hedges......Page 563
11.5.4 Cardinality......Page 565
11.7 Fuzzy Cartesian Product......Page 566
11.8 Fuzzy Relation......Page 567
11.9 Approximate Reasoning......Page 570
11.10 Defuzzification Methods......Page 579
11.11 Introduction to Fuzzy Rule-Based Systems......Page 581
11.12 Applications of Fuzzy Systems to System Modeling......Page 583
11.12.1 Single Input Single Output Systems......Page 584
11.12.2 Multiple Input Single Output Systems......Page 589
11.12.3 Multiple Input Multiple Output Systems......Page 591
11.13 Takagi–Sugeno–Kang Fuzzy Models......Page 592
11.14 Adaptive Neuro-Fuzzy Inferencing Systems......Page 593
11.15 Steady State DC Machine Model......Page 599
11.16 Transient Model of a DC Machine......Page 604
11.17 Fuzzy System Applications for Operations Research......Page 617
11.18 Review Questions......Page 627
11.19 Bibliography and Historical Notes......Page 628
12.1 Introduction......Page 630
12.2 Some Important Definitions......Page 631
12.3 Queuing System......Page 634
12.5 Components of Discrete-Event System Simulation......Page 636
12.7 Family of Distributions for Input Data......Page 640
12.8.1 Uniform Distribution......Page 641
12.8.2 Gaussian Distribution of Random Number Generation......Page 642
12.11 Review Questions......Page 644
A.3 The MATLAB System......Page 646
A.3.4 Handle Graphics......Page 647
A.6.1 Command Window......Page 648
A.6.2 Command History......Page 649
A.7 Entering Matrices......Page 652
A.9 The Colon Operator......Page 655
A.11 Expressions......Page 656
A.11.4 Functions......Page 657
A.12 The Load Command......Page 658
A.15 Entering Long Command Lines......Page 660
A.16.3 Plotting Lines and Markers......Page 661
A.16.5 Multiple Plots in One Figure......Page 662
A.16.9 Mesh and Surface Plots......Page 663
A.18.2 Different Types of Graphs......Page 665
A.20 Creating Movies......Page 669
A.21.1 If......Page 670
A.21.2 Switch and Case......Page 671
A.22.1 Multidimensional Arrays......Page 673
A.22.3 Characters and Text......Page 675
A.23.1 Scripts......Page 679
A.23.2 Functions......Page 680
B.3 Simulation Parameters and Solvers......Page 686
B.4 Construction of Block Diagram......Page 688
B.5 Review Questions......Page 692
C.1 Modeling and Simulation......Page 696
C.2 Artificial Neural Network......Page 701
C.3 Fuzzy Systems......Page 703
C.4 Genetic Algorithms......Page 705
Bibliography......Page 706
Index......Page 718