Modeling and dimensioning of mobile networks : from GSM to LTE

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Product Description: This book is a must-read for all network planners and other professionals wishing to improve the quality and cost efficiency of 3G and LTE networks In this book, the authors address the architecture of the 2/3G network and the Long Term Evolution (LTE) network. The book proposes analytical models that make the analysis and dimensioning of the most important interfaces, i.e. WCDMA or Iub, possible. Furthermore, the authors include descriptions of fundamental technological issues in 2/3 G networks, basic traffic engineering models and frequent examples of the application of analytical models in the analysis and dimensioning of the interface of cellular networks. The specific knowledge included in the content will enable the reader to understand and then to prepare appropriate programming softwares that will allow them to evaluate quality parameters of cellular networks, i.e. blocking probabilities or call losses. Additionally, the book presents models for the analysis and dimensioning of the Wideband Code Division Multiple Access (WCDMA) radio interface and the Iub interface, both carrying a mixture of Release 99 traffic (R99) and High-Speed Packet Access (HSPA) traffic streams. Finally, the analytical models presented in the book can be also used in the process of modeling and optimization of LTE networks. Key Features: * Describes the architecture and the modes of operation of the cellular 2/3/4G systems and the LTE network * Covers the traffic theory and engineering within the context of mobile networks * Presents original analytical methods that enable their users to dimension selected interfaces of cellular networks * Discusses models for the analysis and dimensioning of the Wideband Code Division Multiple Access (WCDMA) radio interface and the Iub interface, both carrying a mixture of Release 99 traffic (R99) and High-Speed Packet Access (HSPA) traffic streams * Includes problems as well as an accompanying website containing solutions, software tools and interactive flash animations (http://wiley.teletraffic.pl) This book will be an invaluable guide for professional engineers (radio planning engineers, optimization engineers, transmission engineers, core network engineers, Service Management engineers) working in the areas of mobile wireless networks technology, not only in optimization process, but also in profitability assessment of newly implemented services (i.e. in NPV - Net Present Value analysis), and researchers and scientists. Advanced students in the fields of mobile communications networks and systems will also find this book insightful.

Author(s): Maciej Stasiak; Mariusz Głąbowski; Arkadiusz Wisniewski; Piotr Zwierzykowski; et al
Publisher: Wiley
Year: 2011

Language: English
Pages: 342
City: Chichester, West Sussex, UK
Tags: Связь и телекоммуникации;Мобильная связь;Сети мобильной связи;

MODELING AND DIMENSIONING OF MOBILE NETWORKS: FROM GSM TO LTE......Page 2
Contents......Page 8
List of Figures......Page 16
List of Tables......Page 20
Preface......Page 22
Part I: Mobile Network Standards......Page 28
1.1 Introduction......Page 30
1.2 System Architecture......Page 31
1.4 Logical Channels......Page 34
1.5 High-Speed Circuit Switched Data (HSCSD)......Page 36
1.6 Packet Transmission based on GPRS......Page 37
1.7 Packet Transmission based on EDGE......Page 39
1.8.2 Traffic Handover......Page 40
References......Page 41
2.1 Introduction......Page 42
2.2 System Architecture......Page 44
2.3 Wideband Access with WCDMA Coding and Multiplexing – Essentials......Page 47
2.3.1 Channelization Codes and Scrambling Codes......Page 49
2.3.2 Bearers in the UMTS System......Page 52
2.4.1 Logical Channels......Page 53
2.4.2 Transport Channels......Page 54
2.4.3 Physical Channels......Page 55
2.5.1 Modulation in the Downlink......Page 56
2.6 Signal Reception Techniques......Page 57
2.7.1 Power Control......Page 59
2.7.2 Handover Control......Page 61
2.7.3 Call Admission Control......Page 62
2.7.4 Packet Scheduler......Page 64
2.8.1 High-Speed Downlink Packet Access (HSDPA)......Page 65
2.9 Services......Page 67
References......Page 68
3.1 Introduction......Page 70
3.2 System Architecture......Page 71
3.3.1 Long-Term Evolution OFDMA in the Downlink Direction......Page 72
3.3.3 Long-Term Evolution MIMO......Page 75
3.4 Channels in the Radio Interface of the LTE System......Page 76
3.4.1 Long-Term Evolution Logical Channels......Page 77
3.4.3 Long-Term Evolution Physical Channels......Page 78
3.5.3 Interference Management and Power Settings......Page 79
References......Page 80
Part II: Teletraffic Engineering for Mobile Networks......Page 82
4.2.1 Poisson Stream and its Properties......Page 84
4.2.2 Mathematical Model of Poisson Stream......Page 85
4.3.2 Mathematical Model of Service Stream......Page 88
4.4.2 Markov Process as a Call Service Process in the Full-Availability Group......Page 91
4.5.1 Introductory Information......Page 96
4.5.3 Definitions of the Average Intensity of Carried Traffic......Page 97
4.6.1 Basic GoS Parameters in Loss Systems......Page 100
References......Page 101
5.2.1 Assumptions of the Model......Page 104
5.2.3 State Equations......Page 105
5.2.6 Loss Probability......Page 106
5.2.8 Erlang Tables......Page 107
5.2.9 Group Conservation Principle......Page 108
5.2.12 Traffic Carried by One Channel of the Full-Availability Group......Page 109
5.3.1 Assumptions of the Model......Page 110
5.3.4 Occupancy Probability of Arbitrarily Chosen i Channels in the Group – Engset Distribution......Page 111
5.3.6 Loss Probability......Page 112
5.3.8 Relationship between the Erlang and Engset Distributions......Page 113
5.3.11 Recursive Properties of the Engset Formula......Page 114
5.3.12 Commentary to the Average Traffic Intensities......Page 115
References......Page 117
6.2.2 Alternative Paths......Page 118
6.2.3 Overflow Traffic......Page 119
6.3.1 Analytic Model of the System with Overflow Traffic......Page 120
6.3.2 State Equations......Page 121
6.3.3 Determination of Overflow Traffic Parameters – Riordan Formulas......Page 123
6.4.1 Formulation of the Problem of Dimensioning Alternative Groups......Page 125
6.4.2 Equivalent Random Traffic (ERT) Method......Page 126
6.4.4 Overflow Group Decomposition Scheme......Page 127
6.4.5 Fredericks–Hayward Method......Page 129
6.5 Modeling of Overflow Traffic in Systems with Finite Number of Traffic Sources......Page 130
6.6 Comments......Page 131
References......Page 132
7.1 Introduction......Page 134
7.2.2 Process Diagram at the Microstate Level......Page 135
7.2.3 Reversibility of the Multi-Dimensional Erlang Process......Page 136
7.2.5 Macrostate Probability......Page 138
7.2.8 Recursive Notation of the Multi-Dimensional Erlang Distribution......Page 139
7.2.9 Interpretation of the Recursive Notation of the Multi-Dimensional Erlang Distribution......Page 140
7.2.10 Service Streams at the Macrostate Level......Page 141
7.3.2 Diagram of Markov Process at the Microstate Level......Page 142
7.3.4 Macrostate Probability......Page 143
7.3.5 Recursive Notation of the Occupancy Distribution of the Full-Availability Group with Multi-Rate Traffic......Page 144
7.3.7 Recursive Properties of the Kaufman–Roberts Distribution......Page 145
7.3.9 Service Streams in the Full-Availability Group with Multi-Rate Traffic......Page 146
7.3.10 Convolution Algorithm......Page 148
7.4 State-Dependent Systems......Page 149
7.4.2 Diagram of the State-Dependent Process at the Microstate Level......Page 150
7.4.3 Reversibility of the State-Dependent Multi-Dimensional Process......Page 151
7.4.4 Approximation of the State-Dependent Process by the Reversible Process......Page 152
7.4.5 Generalized Kaufman–Roberts Distribution......Page 153
7.4.7 Interpretation of the Generalized Kaufman–Roberts Distribution......Page 154
7.5.1 Assumptions......Page 155
7.5.2 The Multi-Service Erlang-Engset Model......Page 156
7.5.3 Calculation Algorithm......Page 157
7.5.4 Comments......Page 158
7.6.1 Basic Model of the Limited-Availability Group......Page 159
7.6.2 Generalized Model of the Limited-Availability Group......Page 162
7.6.3 Comments......Page 165
7.7.1 Bandwidth Reservation......Page 166
7.7.4 Comments......Page 167
7.7.5 Modified Model of the Full-Availability Group with Reservation......Page 168
7.7.6 Comments......Page 172
7.8.1 Single-Threshold Models......Page 173
7.8.2 Multi-Threshold Models......Page 176
7.8.3 Comments for Single-Threshold and Multi-Threshold Systems......Page 180
7.9.1 Description of the Model......Page 181
7.9.2 Comments......Page 184
7.10.1 Description of the Basic Model......Page 185
7.10.2 System with Two Priorities......Page 186
7.10.4 Comments......Page 188
References......Page 189
8.2 Single-Service Model of the Full-Availability Group with Overflow Traffic......Page 192
8.2.1 Assumptions of the Model......Page 193
8.2.3 Occupancy Distribution and Blocking Probability in the Alternative Group with Multi-Rate Traffic......Page 194
8.3 Dimensioning of Alternative Groups with Multi-Rate Traffic......Page 195
8.4 Multi-Service Model of the Full-Availability Group with Overflow Traffic......Page 197
8.5 Comments......Page 199
References......Page 200
9 Equivalent Bandwidth......Page 202
9.1 Interrupted Poisson Process......Page 203
9.2 Markov Modulated Poisson Process......Page 204
9.3 Interrupted Bernoulli Process......Page 205
9.5 Self-Similar Traffic......Page 207
9.6 Example Methods for Determining Equivalent Bandwidth......Page 209
9.6.1 Methods for Loss Systems......Page 210
9.6.3 Determination of the Equivalent Bandwidth for Self-Similar Traffic......Page 213
9.7 Bandwidth Discretization......Page 214
9.7.1 Comments......Page 215
References......Page 216
10.1.2 Classification of Queuing Systems......Page 218
10.1.3 Kendall’s Notation......Page 219
10.2 Little’s Law......Page 220
10.3.2 Diagram of the Service Process......Page 223
10.3.3 State Equations......Page 224
10.3.4 Characteristics of the M/M/1 System......Page 225
10.4.1 Assumptions for the Model......Page 227
10.4.3 State Equations......Page 228
10.5.2 Diagram of the Service Process......Page 230
10.5.3 State Equations......Page 231
10.5.5 Traffic Characteristics of the M/M/m System......Page 232
10.6.2 Traffic Characteristics of the M/M/m/N System......Page 233
10.7 Model of the M/G/1 System with Single-Server and Infinite Queue Size......Page 234
10.7.1 Pollaczek–Khinchin Formula......Page 235
10.7.2 Characteristics of the M/G/1 System......Page 239
10.8 M/D/1 System......Page 240
10.9 Queuing Systems with One Server and Nonpre-Emptive Priorities......Page 241
10.10.1 Assumptions of the Model......Page 244
References......Page 246
Part III: Application of Analytical Models for Mobile Networks......Page 248
11.1.1 Hard and Soft Capacity of the Mobile System......Page 250
11.1.2 Resource Allocation in Mobile Systems with Hard Capacity......Page 251
11.1.3 Resource Allocation in Mobile Systems with Soft Capacity......Page 252
11.2 Cellular System with Hard Capacity Carrying Single-Service Traffic......Page 257
11.2.2 Engset Model of the Radio Interface......Page 258
11.3.1 Erlang Model of the Radio Interface......Page 260
11.4 Cellular System with Hard and Soft Capacity Carrying a Mixture of Multi-Service Traffic Streams......Page 261
11.4.1 Model of the Radio Interface Servicing PCT1 Traffic Streams......Page 262
11.4.2 Model of the Radio Interface Servicing PCT2 Traffic Streams......Page 263
11.4.3 Model of the Radio Interface Servicing PCT1 and PCT2 Traffic Streams......Page 266
11.4.4 Threshold Model of the Radio Interface......Page 268
11.4.5 Priorities in the Radio Interface......Page 276
11.5.2 Calculation Algorithm......Page 279
References......Page 282
12.2 Example Architecture of the Iub Interface......Page 284
12.3 Modeling of the Iub Interface......Page 286
12.3.1 Basic Algorithm for Dimensioning of the Iub Interface......Page 287
12.3.2 Dimensioning of the Iub Interface with Priorities......Page 288
12.3.3 Dimensioning of the Iub Interface Carrying HSPA Traffic......Page 289
References......Page 292
13.2.1 Fixed-Point Method......Page 294
13.2.2 Model of the Group of Cells in the Uplink Direction......Page 298
13.2.3 Model of the Group of Cell in the Downlink Direction......Page 307
13.2.4 Models of Group of Cells in the Uplink and Downlink Directions......Page 308
13.3.1 Model of Intercell Overflow of Single-Rate Traffic......Page 309
13.3.2 Model of Single-Rate Traffic Overflow between Macro and Microcells......Page 311
13.3.3 Model of Intercell Overflow of Multi-Rate Traffic......Page 313
13.4 Handover Mechanisms......Page 316
13.4.1 The Model of the System Optimizing the Arrangement of Connections......Page 317
13.4.2 Assumptions for the Model......Page 318
13.4.3 Group of Cells with Soft Handover Mechanism......Page 321
References......Page 326
Conclusion......Page 328
Appendix A......Page 330
Index......Page 338