Modeling and Control of Vibration in Mechanical Systems (Automation and Control Engineering)

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

From the ox carts and pottery wheels the spacecrafts and disk drives, efficiency and quality has always been dependent on the engineer’s ability to anticipate and control the effects of vibration. And while progress in negating the noise, wear, and inefficiency caused by vibration has been made, more is needed. Modeling and Control of Vibration in Mechanical Systems answers the essential needs of practitioners in systems and control with the most comprehensive resource available on the subject. Written as a reference for those working in high precision systems, this uniquely accessible volume: Differentiates between kinds of vibration and their various characteristics and effects Offers a close-up look at mechanical actuation systems that are achieving remarkably high precision positioning performance Includes techniques for rejecting vibrations of different frequency ranges Covers the theoretical developments and principles of control design with detail elaborate enough that readers will be able to apply the techniques with the help of MATLAB® Details a wealth of practical working examples as well as a number of simulation and experimental results with comprehensive evaluations The modern world’s ever-growing spectra of sophisticated engineering systems such as hard disk drives, aeronautic systems, and manufacturing systems have little tolerance for unanticipated vibration of even the slightest magnitude. Accordingly, vibration control continues to draw intensive focus from top control engineers and modelers. This resource demonstrates the remarkable results of that focus to date, and most importantly gives today’s researchers the technology that they need to build upon into the future. Chunling Du is currently researching modeling and advanced servo control of hard disk drives at the Data Storage Institute in Singapore. Lihua Xie is the Director of the Centre for Intelligent Machines and a professor at Nanyang Technological University in Singapore.

Author(s): Chunling Du, Lihua Xie
Series: Automation and Control Engineering'',
Edition: 1
Publisher: CRC Press
Year: 2010

Language: English
Commentary: index is missing
Pages: 331
Tags: Механика;Теория колебаний;

Contents......Page 6
Preface......Page 12
List of Tables......Page 14
List of Figures......Page 16
Symbols and Acronyms......Page 24
1.1 Magnetic recording system......Page 28
1.2 Stewart platform......Page 29
1.3 Vibration sources and descriptions......Page 31
1.4 Types of vibration......Page 32
1.4.4 Deterministic and random vibration......Page 33
1.4.5 Periodic and nonperiodic vibration......Page 34
1.4.6 Broad-band and narrow-band vibration......Page 35
1.5.1 Random process......Page 38
1.5.3 Gaussian random process......Page 39
1.6.1 Fourier transform and spectrum analysis......Page 40
1.6.3 Spectral analysis......Page 41
2.2 System description......Page 44
2.3.1 Modeling of a VCM actuator......Page 46
2.3.2 Modeling of friction......Page 50
2.3.3 Modeling of a PZT microactuator......Page 56
2.3.4 An example......Page 57
2.4.1 Spectrum-based vibration modeling......Page 66
2.4.2 Adaptive modeling of disturbance......Page 70
2.5 Conclusion......Page 75
3.2 System description and governing equations......Page 80
3.3.1 Adaptive filtering theory......Page 82
3.3.2 Modeling of a Stewart platform......Page 85
3.4 Conclusion......Page 89
4.2.1 Isolators......Page 90
4.2.3 Resonators......Page 91
4.2.4 Suspension......Page 92
4.2.5 An application example – Disk vibration reduction via stacked disks......Page 93
4.3 Self-adapting systems......Page 109
4.4 Active vibration control......Page 110
4.4.2 Active systems......Page 111
4.4.3 Control strategy......Page 113
4.5 Conclusion......Page 114
5.2.1 H2 norm......Page 116
5.2.2 H∞ norm......Page 118
5.3.1 Continuous-time case......Page 119
5.3.2 Discrete-time case......Page 121
5.4.1 Continuous-time case......Page 123
5.4.2 Discrete-time case......Page 126
5.5 Robust control......Page 128
5.6 Controller parametrization......Page 131
5.7.1 Bode integral constraint......Page 135
5.7.3 Sampling......Page 138
5.8 Conclusion......Page 139
6.2 Mixed H2/H∞ control problem......Page 142
6.3 Method 1: slack variable approach......Page 143
6.4 Method 2: an improved slack variable approach......Page 144
6.5.1 Problem formulation......Page 150
6.5.2 Design results......Page 155
6.6 Conclusion......Page 158
7.2 Problem statement......Page 160
7.3.1 H∞ loop shaping for low-hump sensitivity functions......Page 164
7.3.2 Application examples......Page 168
7.3.3 Implementation on a hard disk drive......Page 175
7.4.1 Synthesis method for low-hump sensitivity function......Page 179
7.4.2 An application example......Page 180
7.5 Conclusion......Page 185
8.1 Introduction......Page 188
8.2 Problem description......Page 189
8.3 Generalized KYP lemma-based control design method......Page 190
8.4.1 Conventional peak filter......Page 193
8.4.2 Phase lead peak filter......Page 195
8.5 Application in high frequency vibration rejection......Page 196
8.6 Application in mid-frequency vibration rejection......Page 204
8.7 Conclusion......Page 205
9.1 Introduction......Page 210
9.2 Problem formulation......Page 211
9.3.1 Q parametrization to meet specific specifications......Page 212
9.3.2 Q parametrization to minimize H2 performance......Page 214
9.3.3 Design steps......Page 215
9.4.1 System models......Page 216
9.4.2 Rejection of specific disturbance and H2 performance minimization......Page 217
9.4.3 Rejection of two disturbances with H[sub(2)] performance minimization......Page 220
9.5 Conclusion......Page 221
10.2 Control blending......Page 224
10.2.1 State feedback control blending......Page 226
10.2.2 Output feedback control blending......Page 227
10.3.1 Problem formulation......Page 230
10.3.2 Controller design via the control blending technique......Page 232
10.4.1 Rejecting high-frequency disturbances......Page 234
10.4.2 Rejecting a combined mid and high frequency disturbance......Page 238
10.5 Conclusion......Page 240
11.1 Introduction......Page 242
11.2 Conventional disturbance observer......Page 243
11.3 A general form of disturbance observer......Page 244
11.4 Application results......Page 247
11.5 Conclusion......Page 249
12.1 Introduction......Page 254
12.2 2-D stabilization control......Page 255
12.3 2-D H2 control......Page 256
12.4 SSTW process and modeling......Page 258
12.4.1 SSTW servo loop......Page 259
12.4.2 Two-dimensional model......Page 260
12.5 Feedforward compensation method......Page 262
12.6 2-D control formulation for SSTW......Page 270
12.7.1 Simulation results......Page 271
12.8.1 Simulation results......Page 272
12.8.2 Experimental results......Page 274
12.9 Conclusion......Page 275
13.2 Nonlinearity compensation......Page 278
13.3 Nonlinear control......Page 279
13.3.1 Design of a composite control law......Page 283
13.3.2 Experimental results in hard disk drives......Page 284
13.4 Conclusion......Page 286
14.2 Description of control system with quantizer......Page 288
14.3.2 Quantization effect on error rejection......Page 293
14.4 Compensation of quantization effect on error rejection......Page 296
14.5 Conclusion......Page 299
15.2 Adaptive feedforward algorithm......Page 302
15.3 Adaptive feedback algorithm......Page 304
15.5.1 Multi-channel adaptive feedback AVC system......Page 307
15.5.2 Multi-channel adaptive feedback algorithm for hexapod platform......Page 308
15.5.3 Simulation and implementation......Page 311
15.6 Conclusion......Page 317
References......Page 320