Model Theory for Extended Modal Languages [PhD Thesis]

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This is a PhD Thesis written under supervision of Prof.dr. J.A.G. Groenendijk and Prof.dr. J.F.A.K. van Benthem at the Institute for Logic, Language and Computation.

Author(s): Balder ten Cate
Series: ILLC Dissertation Series DS-2005-01
Publisher: University of Amsterdam
Year: 2005

Language: English
Pages: 221
City: Amsterdam

1 Introduction 1
1.1 Generalized correspondence theory . . . . . . . . . . . . . . . . . 1
1.2 Hybrid logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Modal logic 7
2.1 Syntax and semantics . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Bisimulations and expressivity on models . . . . . . . . . . . . . . 8
2.3 Frame definability . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Completeness via general frames . . . . . . . . . . . . . . . . . . . 17
2.5 Interpolation and Beth definability . . . . . . . . . . . . . . . . . 21
2.6 Decidability and complexity . . . . . . . . . . . . . . . . . . . . . 29
I Hybrid logics 35
3 Introduction to hybrid languages 37
3.1 Syntax and semantics of H, H(@) and H(E) . . . . . . . . . . . . 37
3.2 First-order correspondence languages . . . . . . . . . . . . . . . . 39
3.3 Syntactic normal forms for hybrid formulas . . . . . . . . . . . . . 40
4 Expressivity and definability 45
4.1 Bisimulations and expressivity on models . . . . . . . . . . . . . . 47
4.2 Operations on frames and formulas they preserve . . . . . . . . . 49
4.3 Frame definability . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4 Frame definability by pure formulas . . . . . . . . . . . . . . . . . 60
4.5 Which classes definable in hybrid logic are elementary? . . . . . . 66
5 Axiomatizations and completeness 69
5.1 The axiomatizations . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2 General frames for hybrid logic . . . . . . . . . . . . . . . . . . . 73
5.3 Completeness with respect to general frames . . . . . . . . . . . . 78
5.4 Completeness with respect to Kripke frames . . . . . . . . . . . . 87
5.5 On the status of the non-orthodox rules . . . . . . . . . . . . . . . 89
6 Interpolation and Beth definability 93
6.1 Motivations for studying interpolation . . . . . . . . . . . . . . . 94
6.2 Interpolation over proposition letters and the Beth property . . . 95
6.3 Interpolation over nominals . . . . . . . . . . . . . . . . . . . . . 100
6.4 Repairing interpolation . . . . . . . . . . . . . . . . . . . . . . . . 102
7 Translations from hybrid to modal logics 107
7.1 From H(E) to M(E) . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.2 From H to M in case of a master modality . . . . . . . . . . . . . 109
7.3 From H(@) to M in case of a master modality . . . . . . . . . . . 111
7.4 From H to M in case of shallow axioms . . . . . . . . . . . . . . 113
7.5 From H(@) to M in case of shallow axioms . . . . . . . . . . . . 116
8 Transfer 119
8.1 Negative results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.2 Positive results for logics admitting filtration . . . . . . . . . . . . 122
II More expressive languages 131
9 The bounded fragment and H(@, ↓) 133
9.1 Syntax and semantics . . . . . . . . . . . . . . . . . . . . . . . . . 134
9.2 Expressivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
9.3 Frame definability . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
9.4 Axiomatizations and completeness . . . . . . . . . . . . . . . . . . 142
9.5 Interpolation and Beth definability . . . . . . . . . . . . . . . . . 147
9.6 Decidability and complexity . . . . . . . . . . . . . . . . . . . . . 149
10 Guarded fragments 157
10.1 Normal forms for (loosely) guarded formulas . . . . . . . . . . . . 158
10.2 Eliminating constants . . . . . . . . . . . . . . . . . . . . . . . . . 162
10.3 Connections with hybrid logic, and interpolation . . . . . . . . . . 164
10.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
11 Relation algebra and M(D) 167
11.1 M(D) and its relation to H(E) . . . . . . . . . . . . . . . . . . . . 168
11.2 Repairing interpolation for M(D) . . . . . . . . . . . . . . . . . . 170
11.3 An application to relation algebra . . . . . . . . . . . . . . . . . . 173
12 Second order propositional modal logic 177
13 Conclusions 183
A Basics of model theory 185
B Basics of computability theory 191
Bibliography 197
Samenvatting 205
Abstract 207