Modalities Through the Looking Glass [PhD Thesis]

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Raul Andres Leal
Series: ILLC Dissertation Series DS-2011-09
Publisher: University of Amsterdam
Year: 2011

Language: English
Pages: 256

1 Introduction 1
1.1 Coalgebras and Systems . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Coalgebras and Modal Logics . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Basic modal logic & coalgebras . . . . . . . . . . . . . . . 4
1.2.2 Moss logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Modal logics for coalgebras . . . . . . . . . . . . . . . . . . 6
1.2.4 From modalities to functors . . . . . . . . . . . . . . . . . 7
1.3 Outline and contributions of this thesis . . . . . . . . . . . . . . . 8
2 Algebras & Coalgebras 13
2.1 Coalgebras and Algebras . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 More on Universal Coalgebra... . . . . . . . . . . . . . . . . . . . 18
2.3 Algebras, algebraic signatures, and functors . . . . . . . . . . . . 23
2.3.1 Algebraic signatures as functors . . . . . . . . . . . . . . . 23
2.3.2 Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.3 Monads and Algebras . . . . . . . . . . . . . . . . . . . . . 28
2.4 A first glance at logics for coalgebras . . . . . . . . . . . . . . . . 31
2.4.1 Probabilistic modal logic & coalgebras . . . . . . . . . . . 31
2.4.2 Propositional dynamic logic & coalgebras . . . . . . . . . . 32
2.4.3 Non-normal modal logic . . . . . . . . . . . . . . . . . . . 33
2.4.4 Translations . . . . . . . . . . . . . . . . . . . . . . . . . . 34
I Modalities in the Stone age 35
3 Coalgebraic Modal Logics 37
3.1 Concrete Modalities . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 The abstract functorial framework . . . . . . . . . . . . . . . . . . 43
3.2.1 Modal Signatures as functors on BA . . . . . . . . . . . . . 46
3.2.2 Coalgebraic modal logics beyond BA . . . . . . . . . . . . 49
3.2.3 Other features of the functorial framework . . . . . . . . . 52
3.3 Two generic coalgebraic modal logics . . . . . . . . . . . . . . . . 57
3.3.1 Moss Logic . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3.2 Logics of Predicate Liftings . . . . . . . . . . . . . . . . . 61
4 Comparing Coalgebraic Modal Logics 67
4.1 One step translations . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 Decomposing predicate liftings . . . . . . . . . . . . . . . . . . . . 74
4.2.1 Singleton Liftings . . . . . . . . . . . . . . . . . . . . . . . 76
4.2.2 Translators, Singletons and Inductive Presentations . . . . 81
4.3 Logical Translators . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.4 The Boolean Paradise . . . . . . . . . . . . . . . . . . . . . . . . 88
4.4.1 Translating predicate liftings . . . . . . . . . . . . . . . . . 89
4.4.2 Translating Moss logic . . . . . . . . . . . . . . . . . . . . 93
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5 From Abstract to Concrete 95
5.1 Presentations of functors . . . . . . . . . . . . . . . . . . . . . . . 95
5.1.1 Moss Liftings . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2 Concrete logics from abstract logics . . . . . . . . . . . . . . . . . 105
5.2.1 The first representation Theorem . . . . . . . . . . . . . . 105
5.2.2 Presentations of functors on categories of algebras . . . . . 108
5.2.3 The second representation Theorem . . . . . . . . . . . . . 114
5.3 Equational coalgebraic logic . . . . . . . . . . . . . . . . . . . . . 116
5.3.1 An equational proof system for KT . . . . . . . . . . . . . 116
5.3.2 Well-based presentations . . . . . . . . . . . . . . . . . . . 119
5.3.3 A completeness proof . . . . . . . . . . . . . . . . . . . . . 124
5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
II Coalgebraic Modal Logics at Work 135
6 Describing Behavioural Equivalence: three sides of one coin 137
6.1 An elementary construction of final coalgebras . . . . . . . . . . . 139
6.2 Behaviour & Congruences . . . . . . . . . . . . . . . . . . . . . . 150
6.3 Logical Congruences & Weak Finality . . . . . . . . . . . . . . . . 157
6.4 Different faces of the Hennessy-Milner property . . . . . . . . . . 159
6.5 Beyond sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
7 Dynamic Modalities and Coalgebraic Logics 171
7.1 Labelling predicate liftings . . . . . . . . . . . . . . . . . . . . . . 172
7.2 More on Monads . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
7.3 Algebraic structures over labels . . . . . . . . . . . . . . . . . . . 177
7.3.1 Sequential composition . . . . . . . . . . . . . . . . . . . . 180
7.3.2 Pointwise extensions . . . . . . . . . . . . . . . . . . . . . 184
7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
8 Fixed Points Coalgebraically 195
8.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
8.2 Automata via Predicate liftings . . . . . . . . . . . . . . . . . . . 199
8.3 Bounded model Property . . . . . . . . . . . . . . . . . . . . . . . 201
8.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
9 Beyond the Stone Age 211
A Some definitions from Category Theory 215
A.1 Adjunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Bibliography 219
Index 229
Samenvatting 233
Abstract 235