Modal Quantifiers [PhD Thesis]

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This is a PhD Thesis written under supervision of Prof.dr. J. F. A. K. van Benthem.

Author(s): Natasha Alechina
Series: ILLC Dissertation Series DS-1995-20
Publisher: University of Amsterdam
Year: 1995

Language: English
Pages: 133
City: Amsterdam

1 Introduction 3
1.1 Generalized quantifiers . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.1 Generalized quantifiers and modal operators. (How modal
quantifiers could have been invented) . . . . . . . . . . . . . . 5
1.1.2 Dependence relation between objects . . . . . . . . . . . . . . 5
1.2 Proof-theoreticmotivation . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1 Sequent calculus with indexed variables . . . . . . . . . . . . . 6
1.2.2 Generalized quantification as substructural logic . . . . . . . . 7
1.3 Assignments and cylindrifications . . . . . . . . . . . . . . . . . . . . 8
1.4 Composite variables in programming languages . . . . . . . . . . . . 9
1.5 Overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2 Various logics of modal quantifiers 13
2.1 Structured dependence models . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Hilbert-style axiomatization . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Obtaining stronger logics . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.1 In the direction of generalized quantifiers . . . . . . . . . . . . 22
2.3.2 Circular dependencies, or assignments . . . . . . . . . . . . . . 23
2.4 Crsn-models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5 The weakest logic above Crs and dependence models . . . . . . . . . 29
2.6 Restricted fragments of predicate logic . . . . . . . . . . . . . . . . . 31
2.7 Tableaux for Crs and Crs+ . . . . . . . . . . . . . . . . . . . . . . . 33
2.8 When there are few relevant variables . . . . . . . . . . . . . . . . . . 36
3 Minimal logic of dependence models 39
3.1 Language and models. Informal discussion . . . . . . . . . . . . . . . 39
3.2 Axiomatics and Completeness . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Preservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4 Tableaux. Decidability . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.1 Tableaux for theminimal logic . . . . . . . . . . . . . . . . . . 47
3.4.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4.3 Tableaux for extensions of theminimal logic . . . . . . . . . . 54
3.5 Sequent calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.6 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.7 Using graphs instead of indexed variables . . . . . . . . . . . . . . . . 67
4 Correspondence and Completeness for Generalized Quantifiers 69
4.1 Frame Correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.1.1 Sahlqvist theoremfor frames . . . . . . . . . . . . . . . . . . . 71
4.1.2 Limitative Results . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2 Correspondence for completeness . . . . . . . . . . . . . . . . . . . . 78
4.2.1 Sahlqvist theoremfor completeness . . . . . . . . . . . . . . . 79
4.2.2 Non-existence of correspondents for completeness . . . . . . . 90
4.2.3 Other truth definitions . . . . . . . . . . . . . . . . . . . . . . 93
4.2.4 Undecidability of the correspondence problem . . . . . . . . . 94
5 Binary quantifiers 95
5.1 Semantics and axiomatizations . . . . . . . . . . . . . . . . . . . . . . 96
5.1.1 Minimal logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.1.2 Definability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.1.3 Other truth definitions. Correspondence. . . . . . . . . . . . 99
5.2 Conditionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.2.1 Propositional conditional logic . . . . . . . . . . . . . . . . . . 104
5.2.2 Predicate conditional logic . . . . . . . . . . . . . . . . . . . . 105
5.3 Defeasible reasoning for Bin . . . . . . . . . . . . . . . . . . . . . . . 110
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Samenvatting 115
Bibliography 117
Index 121