Modal Logics of Ordered Trees [PhD Thesis]

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Ulrich Endriss
Publisher: King’s College London
Year: 2003

Language: English
Pages: 230

1 Zooming in 1
1.1 Adding a Zoom to Linear Temporal Logic . . . . . . . . . . . . . . . . . . 1
1.2 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2 Modal and Temporal Logics 13
2.1 Introducing Modalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Possible World Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Axioms and Correspondences . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4 Temporal Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3 Semantic Characterisation 39
3.1 Syntax and Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Some Defined Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3 Correspondences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4 Ontological Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.5 General Models and P-morphisms . . . . . . . . . . . . . . . . . . . . . . 60
3.6 Loosely Ordered Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4 Axiomatic Characterisation 97
4.1 Axioms and Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.2 Some Derived Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.3 Completeness without Descendant Modalities . . . . . . . . . . . . . . . . 113
4.4 Alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5 Decidability 147
5.1 Monadic Second-order Logic . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.2 Finite Binary Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
5.3 Discretely Ordered Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
5.4 General Ordered Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
6 Zooming out 185
6.1 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
6.2 Summary of Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
6.3 Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Appendices 197
A Relations and Orders 199
A.1 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
A.2 Linear Orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
B Derivations 203
B.1 Proof of Lemma 4.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Bibliography 205
List of Figures 211
List of Tables 213
Index 215