Modal Logic and Classical Logic

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The present work is a rewritten version of van Benthem's dissertation ``Modal Correspondence Theory'' (University of Amsterdam, 1976) and a supplementary report called ``Modal Logic as Second-Order Logic'' (University of Amsterdam, 1977).

Author(s): Johan van Benthem
Series: Indices. Monographs in Philosophical Logic and Formal Linguistics, volume 3
Publisher: Bibliopolis
Year: 1983

Language: English
Commentary: Scanned, DjVu'ed, OCR'ed, TOC by Envoy
Pages: 217

Cover ......Page 1
Table of contents ......Page 5
Preface ......Page 7
Introduction ......Page 8
Notation and terminology ......Page 12
Part I. A short survey of propositional modal logic ......Page 15
I. Historical background ......Page 16
II. Possible worlds semantics ......Page 20
III. Definability ......Page 34
IV. Modal algebras ......Page 50
V. Axiomatic theories ......Page 57
VI. Completeness ......Page 62
Part II. First-order definability of modal formulas ......Page 72
VII. Local and global first-order definability ......Page 73
VIII. A model-theoretic characterization of first-order definability ......Page 81
IX. The method of substitutions ......Page 89
X. Disproving first-order definability ......Page 104
XI. Relative first-order definability ......Page 115
XII. Modal predicate logic ......Page 124
XIII. Preservation classes of modal formulas ......Page 131
Part III. Modal definability ......Page 136
XIV. Modally definable elementary classes of frames ......Page 137
XV. Preservation results for first-order formulas ......Page 145
Appendix: Tense logic ......Page 163
XVI. Modally definable classes of frames ......Page 165
Appendix: Higher-order correspondence ......Page 172
Part IV: Higher-order definability ......Page 175
XVII. Universal second-order sentences ......Page 176
XVIII. Second-order logic ......Page 195
XIX. The theory of finite types ......Page 206
Bibliography ......Page 211