Modal Fixpoint Logic: Some model theoretic questions [PhD Thesis]

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Gaelle Fontaine
Series: ILLC Dissertation Series DS-2010-09
Publisher: University of Amsterdam
Year: 2010

Language: English
Pages: 263
City: Amsterdam

1 Introduction 1
2 Preliminaries 11
2.1 Syntax of the -calculus . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Semantics for the -calculus . . . . . . . . . . . . . . . . . . . . . 15
2.3 Game terminology and the evaluation game . . . . . . . . . . . . 21
2.4 -Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.1 !-Automata . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.2 -automata . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.3 Disjunctive formulas . . . . . . . . . . . . . . . . . . . . . 31
2.5 Axiomatization of the -calculus . . . . . . . . . . . . . . . . . . . 32
2.6 Expressivity of the -calculus . . . . . . . . . . . . . . . . . . . . 33
2.6.1 Bisimulation . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6.2 Expressivity results . . . . . . . . . . . . . . . . . . . . . . 35
2.6.3 Expressivity results for -programs . . . . . . . . . . . . . 39
2.7 Graded -calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3 Completeness for the -calculus on nite trees 45
3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Rank of a formula . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3 Completeness for generalized models . . . . . . . . . . . . . . . . 50
3.4 Completeness for nite trees . . . . . . . . . . . . . . . . . . . . . 55
3.5 Adding shallow axioms to K + x:2x . . . . . . . . . . . . . . . 58
3.6 Graded -calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4 The -calculus and frame de nability on trees 67
4.1 MLF-de nability on trees . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Graded -calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3 Preservation under p-morphic images . . . . . . . . . . . . . . . . 84
4.4 Local de nability . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.5 Negative and projective de nability . . . . . . . . . . . . . . . . . 108
4.5.1 Negative de nability . . . . . . . . . . . . . . . . . . . . . 108
4.5.2 Projective de nability . . . . . . . . . . . . . . . . . . . . 110
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5 Characterizations of fragments of the -calculus 115
5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.1.1 Structures and games . . . . . . . . . . . . . . . . . . . . . 117
5.1.2 Guarded and disjunctive formulas . . . . . . . . . . . . . . 118
5.1.3 Expansion of a formula . . . . . . . . . . . . . . . . . . . . 119
5.1.4 Monotonicity and positivity . . . . . . . . . . . . . . . . . 120
5.2 Finite path property . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.3 Finite width property . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.4 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.4.1 Link with Scott continuity . . . . . . . . . . . . . . . . . . 139
5.4.2 Constructivity . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.4.3 Semantic characterization of continuity . . . . . . . . . . . 141
5.5 Complete additivity . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6 CoreXPath restricted to the descendant relation 165
6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.1.1 XML trees . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.1.2 CoreXPath, the navigational core of XPath 1.0 . . . . . . 167
6.1.3 Connections with modal logic . . . . . . . . . . . . . . . . 169
6.2 CoreXPath(#+) node expressions . . . . . . . . . . . . . . . . . . 171
6.3 CoreXPath(#+) path expressions . . . . . . . . . . . . . . . . . . 179
6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
7 Automata for coalgebras: an approach using predicate liftings 189
7.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
7.1.1 Coalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
7.1.2 Graph games . . . . . . . . . . . . . . . . . . . . . . . . . 194
7.2 Automata for the coalgebraic -calculus . . . . . . . . . . . . . . 197
7.3 Finite model property . . . . . . . . . . . . . . . . . . . . . . . . 203
7.4 One-step tableau completeness . . . . . . . . . . . . . . . . . . . . 214
7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
8 Conclusion 223
Bibliography 227
Index 237
List of symbols 241
Samenvatting 243
Abstract 245