Transposable elements (TEs)-DNA sequences that are capable of moving from one chromosome location to another-are found in all living organisms. They have been increasingly investigated in a wide spectrum of species, including bacteria, plants, fungi, and animals. In Mobile Genetic Elements: Protocols and Genomic Applications, leading experts describe in step-by-step detail their most productive transposon-based methods and strategies for studying genome structure, function, and evolution. These readily reproducible techniques cover a broad range, including mutagenesis, transgenesis, gene silencing, and molecular systematics. Among the highlights are a series of DNA hybridization methods for analyzing the distribution and dynamics of mobile DNA at the hosts' genomic level, techniques for studying LTR retrotransposons in heterologous host systems, and mutagenesis protocols for investigating gene functions in a broad range of organisms. Additional methods deal with highly informative sets of polymorphic markers, RNAi technology in gene silencing, and applications during transgenesis. The protocols presented follow the successful Methods in Molecular Biology™ series format, each one offering step-by-step laboratory instructions, an introduction outlining the principle behind the technique, lists of equipment and reagents, and tips on troubleshooting and avoiding known pitfalls.
State-of-the-art and highly practical, Mobile Genetic Elements: Protocols and Genomic Applications offers investigators powerful genetic tools for dissecting the function of a specific gene, elaborating on the mechanisms leading to genetic change and diversity, and studying the evolutionary impact of mobile DNA on the biology and evolution of organisms.