Explains miniemulsion technology and techniques and why they have many distinct advantages over the conventional emulsion polymerization technology Miniemulsion Polymerization Technology comprises 10 papers by many of the world's experts on the subject. It summarizes the recent advances in miniemulsion polymerization technology including the advances on the selection of surfactants and co-surfactants, the expansion of miniemulsion technology in various polymers and co-polymer systems, and the use of miniemulsion polymerization for the synthesis of advanced polymer particle morphologies.
There have been a large number of texts on emulsion and other forms of polymerization methods, but miniemulsion polymerization, though it provides unique routes for polymer particle synthesis, has been neglected.
This edited volume: - Details the use of miniemulsion polymerization in encapsulation, core shell functional particles, nitroxide mediated polymerization, atom transfer radical polymerization or radical addition fragmentation chain transfer polymerization, to generate advanced polymer nanoparticles or organic-inorganic composite particles
- Examines the wide spectrum of commercial possibilities of miniemulsion polymerization
- Provides both introductory material as well as deep insights into the synthesis of polymer particles
Author(s): Vikas Mittal
Series: Wiley-Scrivener
Publisher: Wiley-Scrivener
Year: 2010
Language: English
Pages: 331
Miniemulsion Polymerization Technology......Page 1
Contents......Page 8
Preface......Page 16
1 Miniemulsion Polymerization: An Overview......Page 18
1.1 Introduction to Polymerization Techniques......Page 19
1.2 Emulsion and Miniemulsion Polymerization......Page 20
1.3 Properties of Miniemulsion Polymerization......Page 27
1.4 Controlled Miniemulsion Polymerization......Page 36
References......Page 39
2.1 Introduction......Page 42
2.2 Stability of Initial Monomer Droplets......Page 44
2.3.1 Mass-Transfer Processes......Page 47
2.3.2 Reactive Stabilizers......Page 48
References......Page 56
3.1 Introduction......Page 60
3.2 Styrene-Dodecyl Methacrylate/Stearyl Methacrylate......Page 63
3.3 n-Butyl Methacrylate-Crosslinking Monomers......Page 66
3.4 Vinyl Acetate-Butyl Acrylate......Page 68
3.5 Butyl Acrylate-(2-Methacryloxy)ethyl)trimethyl Ammonium Chloride......Page 70
3.6 Butyl Acrylate–Methyl Methacrylate–Vinyl Acetate......Page 71
3.7 Styrene-Acrylic Acid or 2-Aminoethyl Methacrylate Hydrochloride (AEMH)......Page 72
3.9 Styrene–Butadiene Rubber......Page 74
3.10 Fluoroacrylate–LaurylMethylacrylate–Methyl Methacrylate......Page 78
3.11 Polyurethane–Block–Polystyrene......Page 79
3.12 Alkyd-Acrylic......Page 80
3.13 Oil-Acrylate......Page 82
3.14 Urethane-Acrylic......Page 84
References......Page 85
4.1 Introduction......Page 88
4.2.1 Hydrophobization of Inorganic Nanoparticles......Page 90
4.2.3 Miniemulsification of the Lipophilic Dispersion in Water......Page 92
4.3 Encapsulation of Silica Nanoparticles......Page 93
4.3.1 Miniemulsion Polymerization with Hydrophilic Silica Nanoparticles......Page 94
4.3.2 Miniemulsion Polymerization with Surface-Modified Silica Nanoparticles......Page 95
4.3.3 Miniemulsion Polymerization with Locally Surface-Modified Silica Nanoparticles......Page 100
4.4 Encapsulation of Magnetite Nanoparticles......Page 102
4.4.1 Encapsulation of Magnetite by a Single Miniemulsion Polymerization Process......Page 103
4.4.2 Encapsulation of Magnetite by a Double Miniemulsion Polymerization Process......Page 106
4.5 Conclusions and Future Perspectives......Page 108
References......Page 109
5.1 Introduction......Page 114
5.2.1 Thermodynamic Prediction for the Morphology of Organic Nanocapsules......Page 116
5.2.2 Particles Morphology of the System without Added NIPAM and DVB......Page 118
5.2.3 Particles Morphology of the System with DVB......Page 120
5.2.4 Particle Morphology of the System with Added NIPAM and DVB......Page 122
5.2.5 Particle Size and Size Distribution in the Process of Polymerization......Page 126
5.2.6 Mechanism for the Formation of Organic Nanocapsules through Interfacial Miniemulsion Polymerization......Page 129
5.2.7 Influences on the Formation of Organic Nanocapsules through Interfacial Miniemulsion Polymerization......Page 130
5.3.1 Thermodynamic Analysis and Morphological Prediction......Page 134
5.3.2 Synthesis of Organic-Inorganic Hybrid Nanocapsules under Neutral Conditions......Page 136
5.3.3 Synthesis of Organic-Inorganic Hybrid Nanocapsules under Acidic or Basic Conditions......Page 141
5.3.4 Mechanism Analysis of Organic-Inorganic Hybrid Nanocapsules Formation......Page 151
5.4 Conclusions......Page 153
References......Page 154
6.1 Introduction and Background......Page 156
6.2 Emulsion Polymerization of Alkyds and Vegetable Oils......Page 160
6.3 (Meth)acrylated Vegetable Oil Derivatives......Page 162
6.4 Vegetable Oil Macromonomers......Page 163
6.5 The Potential for Emulsion of Model Saturated Monomers......Page 167
6.6 Nucleation Mechanisms......Page 169
6.7 Design of Thermosetting Latex Polymers......Page 171
6.8 Classifying Monomer Solubility for Macro and Miniemulsion Polymerization......Page 175
6.10 Miniemulsion Polymerization......Page 177
6.11 Conclusions......Page 185
References......Page 186
7 Controlled/Living Radical Polymerization in Aqueous Miniemulsion......Page 190
7.2 Controlled/Living Radical Polymerization in Bulk/Solution: General Considerations......Page 191
7.2.1 CLRP Based on Reversible Termination......Page 192
7.2.1.1 Nitroxide-Mediated Polymerization (NMP)......Page 193
7.2.1.2 Atom Transfer Radical Polymerization (ATRP)......Page 194
7.2.2 CLRP Based on Degenerative Transfer......Page 195
7.2.2.1 Reversible Addition-Fragmentation Chain Transfer (RAFT)......Page 196
7.2.2.2 Iodine Transfer Polymerization (ITP)......Page 197
7.3 Nitroxide-Mediated Miniemulsion Polymerization......Page 199
7.3.1 Oil-Soluble Bicomponent Initiating System......Page 200
7.3.2 Water-Soluble Bicomponent Initiating System......Page 202
7.3.3 Oil-Soluble Monocomponent Initiating System......Page 203
7.4 Atom Transfer Radical Miniemulsion Polymerization......Page 205
7.4.2 Reverse ATRP......Page 207
7.4.4 Activators Generated by Electron Transfer (AGET) ATRP......Page 209
7.5 Reversible Addition-Fragmentation Chain Transfer Miniemulsion Polymerization......Page 210
7.5.1.1 Inhibition and Retardation......Page 211
7.5.1.2 Colloidal Instability......Page 213
7.5.1.3 Livingness and Controlled Polymerization......Page 215
7.5.2 RAFT Miniemulsion Polymerization of Vinyl Acetate......Page 216
7.5.3 Nanocapsules Synthesized by RAFT Miniemulsion Polymerization......Page 217
7.6 Iodine Transfer Polymerization in Miniemulsion......Page 218
7.7 Conclusion......Page 219
References......Page 220
8.1 Introduction......Page 228
8.2 General......Page 232
8.3 Kinetic Studies......Page 235
8.4.1 Water Soluble Monomers......Page 238
8.4.2 Hydrophobic Monomers......Page 247
8.5 Controlled Radical Miniemulsion Polymerization......Page 249
8.6 Amphiphilic and Associating Copolymers......Page 254
8.7 Conclusion......Page 257
Abbreviations......Page 261
References......Page 263
9 Double Miniemulsion Preparation for Hybrid Latexes......Page 268
9.1 Introduction......Page 269
9.2 Hybrids via Mini-Emulsion Polymerization......Page 270
9.4 Stability......Page 272
9.5 Characterization......Page 274
9.6 Applications......Page 278
9.6.1.1 Initiator Dosage......Page 283
9.6.1.2 MMA Monomer Concentration......Page 284
9.6.2.1 Viscosity Versus Time......Page 285
9.6.2.2 Viscosity with/without Magnetic Field......Page 286
9.6.2.3 Applications of Magnetic Polymer Microspheres......Page 287
9.7 Summary......Page 288
References......Page 289
10.1 Introduction......Page 294
10.2 Miniemulsion Polymerization of Biodegradable Latexes......Page 295
10.3.1 General Behavior of a Surfactant Molecule at the Interface......Page 299
10.3.2 Mechanism 1: Lowering the Interfacial Tension......Page 301
10.3.3 Mechanism 2: Electrostatic Stabilization......Page 303
10.3.4 Mechanism 3: Steric Stabilization......Page 305
10.4.1 Effect of Surfactant Type on the Particle Size and Latex Yield......Page 308
10.4.2 Effect of Surfactant Concentration on Particle Size and Latex Yield......Page 311
10.4.3 Effect of Surfactant on the Stability......Page 314
10.5 Final Remarks......Page 315
References......Page 316
Index......Page 320