Discover the concepts, architectures, components, tools, and techniques needed to design millimeter-wave circuits for current and emerging wireless system applications. Focusing on applications in 5G, connectivity, radar, and more, leading experts in radio frequency integrated circuit (RFIC) design provide a comprehensive treatment of cutting-edge physical-layer technologies for radio frequency (RF) transceivers - specifically RF, analog, mixed-signal, and digital circuits and architectures. The full design chain is covered, from system design requirements through to building blocks, transceivers, and process technology. Gain insight into the key novelties of 5G through authoritative chapters on massive MIMO and phased arrays, and learn about the very latest technology developments, such as FinFET logic process technology for RF and millimeter-wave applications. This is an essential reading and an excellent reference for high-frequency circuit designers in both academia and industry.
Author(s): Gernot Hueber, Ali M. Niknejad
Series: The Cambridge RF and Microwave Engineering Series
Publisher: Cambridge University Press
Year: 2019
Language: English
Pages: 456
Contents......Page 8
Contributors......Page 15
Foreword......Page 18
1.1.1 What Is 5G?......Page 20
1.1.2 A Brief History of the Gs......Page 21
1.1.3 Do We Need 5G?......Page 23
1.2 Radar......Page 29
1.3 A Circuit Designer’s Perspective......Page 32
2.1 RF Requirements Inspired by 5G System Targets......Page 37
2.2 Radio Spectrum and Standardization......Page 39
2.3 System Scalability......Page 41
2.4 Communications System Model for RF System Analysis......Page 43
2.5.1 Transmitter......Page 48
2.5.2 Receiver......Page 50
2.5.3 Antenna Array......Page 52
2.5.4 Transceiver Architectures for RF and Hybrid Beamforming......Page 55
2.6 Radio Propagation and Link Budget......Page 57
2.7 Multiuser Multibeam Analysis Example......Page 62
2.8 Conclusion......Page 70
3.1 Spatial Processing: Untapped Potential......Page 74
3.2 MIMO Technology Overview......Page 75
3.2.1 Spatial Multiplexing with Antenna Arrays......Page 77
3.2.2 MIMO: Exploiting Multipath Propagation......Page 79
3.2.3 Channel Rank......Page 81
3.2.4 Multiuser MIMO (MU-MIMO)......Page 82
3.3.1 Channel Estimation......Page 83
3.3.2 Linear Beamforming......Page 84
3.3.3 ML and Near-ML Receivers......Page 85
3.3.4 Successive Interference Cancellation......Page 86
3.3.6 Massive MIMO: High-Order MU-MIMO......Page 87
3.4 System Architecture for Large Arrays......Page 88
3.4.1 State of the Art......Page 89
3.4.2 A Scalable Beamforming-Aware Array Architecture......Page 90
3.5.1 Synchronization......Page 95
3.5.2 Reciprocity and Channel Estimation......Page 96
3.6 Conclusion......Page 97
4.1 Overview of Full-Duplex......Page 103
4.2.2 Milimeter-Wave FD Relaying......Page 105
4.2.3 Millimeter-Wave Vehicular Radar......Page 106
4.3 Full-Duplex Challenge and System Considerations......Page 107
4.4.1 Antenna Suppression......Page 111
4.4.2 Shared Antenna Interface......Page 113
4.4.3 Integrated Low-RF FD Radios......Page 117
4.4.4 Integrated Millimeter-Wave FD Radios......Page 122
4.5 Conclusion......Page 125
5.1 Introduction......Page 131
5.2.1 Hybrids......Page 132
5.2.2 Active Cancellation......Page 133
5.3.1 Conceptual Overview......Page 134
5.4.1 DAC Power Consumption......Page 136
5.4.2 System Thermal Noise......Page 137
5.5 System Degradation......Page 142
5.6 Transmitter......Page 143
5.7.1 DAC Linearity......Page 145
5.7.2 DAC Thermal Noise Cancellation......Page 146
5.8.1 Channel Memory......Page 149
5.8.2 PA Dynamic Nonlinearity......Page 151
5.9 Measurement Results......Page 154
5.10 Conclusion......Page 162
6.1 Large-Scale Phased and MIMO Arrays......Page 165
6.2 Reconfigurable Spatial Filtering......Page 166
6.2.1 MIMO Spatial Filtering at RF......Page 167
6.3 N-Path Spatiospectral Filtering......Page 168
6.4 Scalable mm-Wave Packaging......Page 171
7.1 Introduction......Page 181
7.2 Frequency-Modulated Continuous-Wave Radar......Page 183
7.3 Phase-Modulated Continuous-Wave Radar......Page 185
7.4.4 IF Bandwidth and ADC......Page 187
7.5 Link Budget for a PMCW Radar......Page 188
7.5.1 Link Budget for Single-Antenna TX and RX and MIMO Systems......Page 189
7.6 MIMO Techniques for PMCW Radars......Page 191
7.6.3 Comparison of the Two Approaches and Implementation......Page 192
7.7 Analog and Millimeter-Wave Circuits......Page 193
7.7.1 Frequency Generation......Page 194
7.8.1 Module and Antenna Design......Page 200
7.8.2 Circuit-Level Measurements......Page 201
7.8.3 Radar System Measurements......Page 205
7.8.4 Conclusions and State-of-the-Art Comparison......Page 208
8.1 Introduction......Page 212
8.2.1 Challenges and Design Considerations......Page 213
8.2.2 Direct-Conversion Transceiver Architecture......Page 220
8.3.1 Local Synthesizer......Page 221
8.3.2 Transmitter......Page 224
8.3.3 Receiver......Page 230
8.3.4 Calibration Techniques......Page 236
8.4 Measurement Results of Transceiver Chips......Page 243
8.5 Conclusion......Page 255
9.1 The Role of mm-Wave in 5G Communications......Page 262
9.2.1 Beamforming as a Fourier Transform......Page 263
9.2.2 Beam Shaping and Beam Steering......Page 268
9.2.3 2D Antenna Array......Page 269
9.3.1 Accurate Beam Control......Page 271
9.3.2 Architecture Scalability......Page 272
9.3.3 Dual-Polarized Operation......Page 273
9.3.4 Small Solution Footprint......Page 274
9.3.5 Orthogonal Phase and Gain Control......Page 276
9.4.1 Circuit Details......Page 277
9.4.2 Measurement Results......Page 282
9.5 Conclusion......Page 289
10.1 Introduction and Motivation......Page 292
10.2 Design of a Silicon-Based Ka-Band PLL......Page 298
10.3.1 Harmonic Generation of HBT......Page 299
10.3.2 Circuit Design of the mm-Wave ILFT......Page 300
10.3.3 Measurement Results......Page 305
10.4.1 Circuit Design of the mm-Wave HBFT......Page 306
10.4.2 Measurement Results......Page 308
10.5.1 Harmonic Generation of an MOS Transistor......Page 310
10.5.2 Millimeter-Wave T-ILFT Structure......Page 312
10.5.3 Measurement Results......Page 315
10.6 Comparisons and Discussions......Page 319
10.7 Conclusions......Page 321
11.1 Introduction to Digitally Intensive PLL......Page 324
11.2 Multirate DPLL-Based Frequency Modulator Architecture......Page 328
11.3.1 Distributed Switched Metal Capacitor Bank for mm-Wave DCOs......Page 331
11.3.2 Transformer-Coupled Fine-Tuning Bank......Page 334
11.3.3 A 60 GHz DCO Design Example......Page 336
11.4 Time-to-Digital Converter......Page 338
11.5.1 DCO Gain Calibration and Linearization......Page 343
11.5.2 Mismatch Calibration of the Fine-Tuning Bank......Page 345
11.5.3 Synchronization in a Multirate System......Page 346
11.5.4 Experimental Results......Page 347
11.6 Built-In Self-Test and Built-In Self-Characterization for DPLL......Page 350
11.6.1 Critical Signals in DPLL for BIST and BISC......Page 352
11.6.2 Snapshotting Internal Signals for Debugging......Page 355
11.7 Another Approach: DTC-Assisted DPLL Architecture......Page 356
12.1 LO Design......Page 366
12.1.1 LO Architectures......Page 367
12.1.2 Impact of LO Architecture on VCO Requirements......Page 368
12.2 Fundamentals of VCO Design......Page 369
12.2.1 Improving Noise Factor by Avoiding Triode Operation......Page 373
12.3 VCO Frequency Scaling......Page 375
12.4 Design Procedure......Page 377
12.5 Practical Considerations in VCO Design......Page 378
12.5.1 Tail Tuning and Bypass Capacitance......Page 379
12.5.2 Kickback from the First VCO Buffer......Page 381
12.5.4 AM/PM Conversion in Small Tuning-Range VCO Designs......Page 383
12.5.5 Bias Circuit Design for VCO......Page 384
12.6 Conclusion......Page 385
13.2 5G RF Front-End Requirement......Page 388
13.2.1 Quantify the Signal Quality......Page 389
13.2.2 Signal Influenced by PA Nonlinearities......Page 392
13.3 Power Amplifier Basics......Page 393
13.3.2 Passive Device in CMOS......Page 394
13.4 Impedance Transformation and Power Combining......Page 398
13.4.1 PA Nonlinearity......Page 400
13.4.2 Linearity Enhancement Technology......Page 401
13.5.1 Power Transistor with Source Degeneration Inductor......Page 403
13.5.2 Design......Page 404
13.5.3 Measurement Results......Page 408
13.6 Conclusion......Page 414
14.1 Overview of FinFET Technology......Page 419
14.2.1 Transistor Scaling and Performance......Page 423
14.2.2 Nonlinear Gate Resistance by 3D Structure......Page 425
14.2.3 Fin Self-Heating......Page 427
14.3 Assessment of FinFET Technology for RF/mm-Wave......Page 429
14.3.1 Parasitics and RF Performance......Page 430
14.3.2 Noise Performance......Page 431
14.3.3 Gain and Noise Matching at the mm-Wave Frequency......Page 433
14.4.1 Wireless Design Consideration in Cascade Chain......Page 435
14.4.2 Optimizing NF with Gmax for LNA within Self-Heat Limit......Page 436
14.4.3 Gain per Power Efficiency......Page 439
14.4.4 Linearity for Gain and Power Efficiency......Page 442
14.4.5 Neutralization for mm-Wave Applications......Page 444
14.5 Design Example for an mm-Wave Amplifier with the Proposed Design Methodology......Page 446
14.6 Conclusion......Page 448
Author Index......Page 451
Subject Index......Page 452