Microwave Propagation and Remote Sensing

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Pranab Kuma Karmakar
Series: Electrical Engineering
Publisher: Taylor & Francis Inc
Year: 2011

Language: English
Pages: 257
City: Bosa Roca
Tags: Науки о Земле;Метеорология и климатология;Физико-химические процессы в атмосфере. Методы измерений;


Content: Outlines of Radio Waves and Troposphere General Perspective Troposphere The Effective Earth's Radius Radio Link Classification of Radio Waves according to Propagation Mechanism Radio Refractivity and Delay through the Atmosphere Tropospheric Aerosols Rain Characteristics Propagation of Radio Waves: An Outline Introduction Power Gain of Directional Aerial Free Space Field Due to Directional Transmitting Aerial Power at the Receiving Directional Aerial Free Space Transmission Loss Radio Waves in Neutral Atmosphere When Is a Medium a Conductor or Dielectric? Wave Polarization Reflection and Interference of Radio Waves Introduction Reflection of Radio Waves: An Outline Plane Wave at Dielectric Interface Reflection Coefficient for Flat Smooth Earth Field Strength Due to Reflection from Flat Earth Effect of the Earth's Curvature: Spherical Earth Mechanism of Ground Wave Propagation Radio Refraction and Path Delay Introduction Radius of Curvature of the Ray Path Refractivity Is Complex and Frequency Dependent Turbulence-Induced Scintillation Microwave Propagation through Tropospheric Turbulence Propagation over Inhomogeneous Surface Tropospheric Ducting Propagation Delay through the Atmosphere Absorption of Microwaves Introduction Absorption Coefficient Microwave and Millimeter Wave Absorption in the Atmosphere Centrifugal Distortion Water Vapor Absorption at 22.235 GHz Water Vapor Absorption at 183.311 GHz Water Vapor and Microwave Attenuation Choice of Frequency Attenuation Studies in 50-70 GHz Band Attenuation Studies at 94 GHz Rain Attenuation and Its Application at Microwaves Introduction Radiometric Estimation of Rain Attenuation ITU-R Rain Attenuation Model and Its Applicability Raindrop Size Distribution in the Tropics Attenuation by Hydrometeors Other than Rain Snow Hail Fog Aerosols Clouds: Nonprecipitable Liquid Water Microwave Radiometric Estimation of Water Vapor and Cloud Liquid Effect of Water Vapor and Liquid Water on Microwave Spectra Cloud Radar Appendix: Mean Atmospheric Temperature at Microwaves and Millimeter Waves in Clear Air Environment