Microwave Differential Circuit Design Using Mixed Mode S-Parameters

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

New, powerful mixed-mode scattering parameter techniques are earning rave reviews among wireless and microwave engineers, because they have proved to be highly effective design tools for optimizing the performance of integrated circuits, components, and systems. Now, for the first time, these techniques are explained in full detail by the inventors themselves. This groundbreaking guide uses the original research and application work in the field to describe mixed-mode S-parameter principles and provide practitioners with expert advice on how to use these tools for their own microwave design projects. The book includes over 150 illustrations that support key topics.

Author(s): William R. Eisenstadt, Bob Stengel, Bruce M. Thompson
Year: 2006

Language: English
Pages: 244

Contents......Page 8
Preface xiii......Page 14
Acknowledgments......Page 16
1.1 Introduction 1......Page 18
1.2 Digital Versus Analog Signal Integrity 2......Page 19
1.3.1 Rise Time, Fall Time, Duty Cycle, and Period 4......Page 21
1.3.2 Jitter 5......Page 22
1.3.4 Isolation 7......Page 24
1.5 Differential Circuit Definitions 9......Page 26
1.6 Electromagnetic Coupling 13......Page 30
1.7 Common-Mode Impedance Rejection of Differential Circuits 18......Page 35
1.8 Increased Distortion-Free Dynamic Range with Differential Circuits 21......Page 38
1.9 Nonlinear Even-Order Distortion Improvement with Differential Circuits 23......Page 40
1.10 Conclusions 25......Page 42
References 26......Page 43
2.1 Introduction 27......Page 44
2.2 Mode Definitions 30......Page 47
2.3 Mode-Specific Waves and Impedances 32......Page 49
2.4 Normalized Power Waves 34......Page 51
2.5 Mixed-Mode Scattering Parameters 37......Page 54
2.6 Standard S-Parameter/Mixed-Mode S-Parameter Transformation 42......Page 59
2.7 Conclusions 45......Page 62
References 46......Page 63
3.1 Introduction 47......Page 64
3.2 Traveling Waves and Transmission-Line Concepts 48......Page 65
3.3 Mode Specific S-Parameters—Isolated Transmission Lines 53......Page 70
3.4 Mode Specific S-Parameters—Coupled Transmission Lines 60......Page 77
3.5 Time-Domain Analysis—Coupled Transmission Lines 65......Page 82
3.6 Distributed Mixed-Mode S-Parameter to R, L, G, and C Model 66......Page 83
3.7 Single-Ended Signal Application in Mixed-Mode Terms 71......Page 88
References 78......Page 95
4.1 Introduction 79......Page 96
4.2 DLNA Implementation 80......Page 97
4.2.1 Ideal Mixed-Mode S-Parameters 81......Page 98
4.2.3 Noise Rejection 83......Page 100
4.2.4 Common-Mode Gain 86......Page 103
4.3 DLNA S-Parameters, Sdd 87......Page 104
4.4 Neutralized DLNA 88......Page 105
4.5 Passive Circuits 90......Page 107
4.6 Impedance Matching 91......Page 108
4.7 Cross-Mode Parameters 93......Page 110
4.8 Common-Mode Rejection 94......Page 111
4.9 Supply and Ground Response 96......Page 113
4.10 Common-Mode Signal Postprocessing 97......Page 114
4.11 Noise Figure 98......Page 115
4.12 Balanced Signal Losses 100......Page 117
4.13 Distortion Analysis 103......Page 120
4.14 Odd-Order Distortion 106......Page 123
4.15 Even-Order Distortion 108......Page 125
References 112......Page 129
5.1 Introduction 113......Page 130
5.2 Wilkinson Impedance Transformer Splitter/Combiner 114......Page 131
5.3 Splitter/Combiner Mixed-Mode S-Parameter Matrix 115......Page 133
5.4 Splitter/Combiner Standard S-Parameter Matrix 119......Page 136
5.5 Mixed-Mode Splitter/Combiner S mm = MS std M -1 125......Page 142
5.6 Splitter General-Purpose Analysis/Specifications 130......Page 147
5.7 Combiner General-Purpose Analysis/Specifications 137......Page 154
5.8 Hybrid Splitter/Combiner and Mixed-Mode S-Parameters 141......Page 158
5.9 Transformer Sigma/Delta Hybrid Implementation 144......Page 161
5.10 Transformer 90° Hybrid Implementation 149......Page 166
5.11 Summary—Mixed-Mode S-Parameters Applied to Baluns and Hybrids 151......Page 168
References 152......Page 169
6.2 Impedance (Z ), Admittance (Y ), Hybrid (H ), ABCD, Chain (T ), and Scattering (S ) Parameter Network Matrix Models 153......Page 170
6.3 Differential Band-Pass Filter 171......Page 188
6.4 Dual Directional Coupler 184......Page 201
6.5 Differential Isolator 186......Page 203
References 191......Page 208
7.1 Introduction 193......Page 210
7.2 Steady State AC Network Response 195......Page 212
7.3 Impulse Response 196......Page 213
7.4 Representation of Signals by a Continuum of Impulses 198......Page 215
7.5 Impulse Response 199......Page 216
7.6 Step Response and TDR 202......Page 219
7.7 Impulse Transmission Response and TDT 207......Page 224
7.8 Parallel, Cascade, and Feedback Connections 212......Page 229
7.9 Summary of S-Parameter Applications in the Time Domain 214......Page 231
References 215......Page 232
About the Authors 217......Page 234
Index 219......Page 236