This resource offers professionals detailed guidance on the mechanical aspects of designing and manufacturing microwave components. It takes an interdisciplinary approach that combines design and manufacturing, mechanical and electrical design, and microwave component performance and productivity. Practitioners should discover the immediate connection between electrical and mechanical quality, helping them more easily arrive at cost-effective solutions and reduce the unnecessary use of "double tolerancing". Based on real industrial projects, the work helps professionals create effective project plans and utilize efficient design methodologies for their varied projects in microwave mechanics and manufacturing. There are over 100 illustrations and more than 110 equations.
Author(s): Harri Eskelinen, Pekka Eskelinen
Publisher: Artech House Publishers
Year: 2003
Language: English
Pages: 392
Microwave Component Mechanics......Page 4
Copyright......Page 5
Contents......Page 6
Acknowledgments......Page 16
Introduction......Page 18
Part 1: Design for Manufacturability and Assembly
of Mechanical Microwave Components......Page 22
1 Special Requirements for Microwave Mechanics......Page 24
1.1.1 Maxwell¡¯s Equations......Page 25
1.1.2 General Wave Propagation......Page 26
1.2 Dimensional Uncertainties......Page 29
1.3 Material Problems......Page 36
1.3.1 A Good Conductor......Page 38
1.3.2 Electromagnetic Radiation......Page 40
1.3.3 Electromagnetic Waves Initiated by Cavities......Page 43
1.4 Connection Philosophies......Page 47
References......Page 48
2.1 Principles of Systematic Design......Page 50
2.1.1 Some Assisting Tools......Page 52
2.1.2 List of Requirements......Page 54
2.2 Advanced Methodology for Designing Microwave Mechanics......Page 55
2.2.1 Basic Elements of the Advanced Methodology......Page 56
2.2.2 Flowchart Presentation of the Tuned Methodology......Page 60
References......Page 63
3.1 Basic Guidelines for Microwave Designers......Page 66
3.2.1 Electromagnetic Losses......Page 68
3.2.2 Definition of the Penetration Depth......Page 69
3.3 Effects of the Operating Environment......Page 72
3.4 Metallic Components......Page 75
3.4.2 Superconductor Oxygen- Free Copper......Page 76
3.4.3 Beryllium Copper Alloy......Page 77
3.4.4 Phosphorus Bronze......Page 78
3.4.6 Stainless Steels......Page 79
3.4.7 Aluminum Alloys......Page 81
3.4.8 Invar......Page 83
3.5.2 PE......Page 85
3.5.4 PEEK......Page 86
3.6 Utilization of Ceramic Materials and Powder Metallurgy......Page 87
3.6.1 Powder- Metallurgically Manufactured Materials for Microwave Mechanics......Page 90
3.6.2 Application Areas of Ceramic Materials in Microwave Mechanics......Page 94
3.6.3 Low Temperature Cofired Ceramics......Page 96
References......Page 98
4 Computer-Aided Environment for Design Work......Page 100
4.1 Integration of Basic CAD Tools......Page 101
4.1.1 Interaction Between Virtual Engineering and Hypermedia Applications in Controlling Heat Input During Welding of Microwave Components......Page 107
4.1.2 Integration of Computer- Assisted Engineering and Microwave Mechanics Simulation in Welded Stripline Filter Design......Page 115
4.2 Typical Simulation Software Solutions for Microwaves......Page 117
4.3.1 Problems in CAD Applications Made for General Mechanical Engineering......Page 123
4.3.2 Problems in CAD Applications Developed for Microwave Design......Page 124
References......Page 129
5 Instructions for Technical Documentation
and Dimensioning......Page 132
5.1 The Relationship Between RF Parameters and Mechanical Parameters......Page 133
5.2 Differences Between DFMA- and Performance- Oriented Approaches......Page 135
5.3 On the Suitability of General Manufacturing Tolerances for MW Mechanics......Page 137
References......Page 139
6.1.1 Design Costs......Page 140
6.1.4 Costs Related to the Expected Lifetime of the Product......Page 141
6.2 Relationship Between Manufacturing Costs and Surface Finish......Page 142
6.4 Design for Manufacturability......Page 143
6.4.2 The Barrier Between Designing and Manufacturing......Page 144
6.4.3 Putting DFM in Practice......Page 146
6.4.4 Additional Tools for DFM......Page 148
6.4.5 More Effective Use of DFM......Page 149
6.5 A Cross- Technological Approach......Page 150
6.6 Concurrent Engineering Design......Page 152
6.6.1 The Design Process for CE......Page 153
6.6.2 Manufacturability for CE Design......Page 154
6.7 Manufacturing Costs of Prototypes......Page 155
6.9 Cost Evaluation by Utilizing Parametric Component Design......Page 156
6.10 Cost Accumulation in Laser Processed Components......Page 157
6.12 A Multilevel Optimizing Approach for Cost- Effective Production......Page 162
Part 2: Manufacturing Technologies for Some
Passive Microwave Components......Page 172
7.1 Welding Processes for the Topic Area......Page 174
7.2 Laser Welding in General......Page 175
7.2.1 Parameters of Laser Welding......Page 177
7.3 Laser- Welded Stripline Filter......Page 178
7.4 Utilizing Ultrasonic Welding in Filter Constructions......Page 185
7.5 Welded Joint Geometries of Microwave Cavity Resonators and Waveguides......Page 191
7.5.1 Practical Welding Instructions for Cavity Resonators and Waveguides......Page 195
7.6 Welded Radiating Elements of Patch Antennas......Page 198
7.7 A Comparison of Welding Processes for Encapsulating Electronics......Page 213
7.7.1 Advantages of Laser Welded Sealing......Page 214
7.7.2 Projection Welding Application......Page 218
References......Page 221
8.1 Assembly Rules for Screw Joints to Obtain Reliability and Required Microwave Performance......Page 224
8.2.1 Acrylic- Based Adhesives......Page 226
8.2.4 Adhesives with Good Electrical Conductivity......Page 227
8.2.5 Adhesives for High- Strength Applications......Page 229
8.3 Applications of Fits......Page 230
References......Page 231
9.1 General Rules for Machining Technologies......Page 232
9.2 Milled Low Loss Filters......Page 236
9.3 Ring Hybrids and Other Milled Power Dividers......Page 239
9.4 General Enclosures for Encapsulating Electronics......Page 245
9.5 Connector Mounting Considerations......Page 250
9.6 Rotary Joints......Page 252
9.6.1 Basic Waveguide Rotary Joints......Page 254
9.6.2 Swivel Joints......Page 255
9.6.5 Multichannel Rotary Joints......Page 256
9.7 Case Examples of Precision Machined Microwave Components......Page 258
9.7.1 High- Q SiO Whispering Gallery Mode Resonator......Page 259
9.7.2 Center Conductor for a Tubular Coaxial Filter......Page 260
References......Page 261
10.1 Sheet Metal Cutting In General......Page 264
10.2.1 A Water Jet Cut Ring Hybrid......Page 267
10.3 Laser Processed Feeding Strips......Page 270
10.3.1 Laser Cutting Process in General......Page 271
10.3.2 A Laser Cut Sharp- Edged Center Conductor......Page 272
10.3.3 Laser Cut Striplines for Low- Loss Interdigital Filters......Page 274
10.4 Tuning Coaxial Transitions......Page 277
References......Page 280
11.1 Extrusion Processes for Metallic Profiles......Page 282
11.2 Selected Processes for Shaping Plastics......Page 285
11.2.1 Injection Molding......Page 286
11.3 Drawing Processes for Wires......Page 287
11.4 Forming Processes for Sheet Metals......Page 288
11.5 Electroforming Process for Corrugated Waveguides......Page 289
References......Page 290
12.1 Basics of Coating Technology......Page 292
12.3 Coating Materials for Microwave Mechanics......Page 294
12.4 Case Examples of Coated Microwave Components......Page 299
References......Page 303
Part 3: Examples of Requirements for Mechanical
Accessories in Microwave Assemblies......Page 304
13 A Microwave Measuring System for Wood Quality......Page 306
13.1 Description of the Test Arrangement......Page 307
13.2 Transducer Arrangements......Page 310
13.3 Mechanical Requirements for the Measurement SystemAssembly......Page 312
13.3.1 Serviceability and Easy Access......Page 314
References......Page 315
14 Antenna Constructions......Page 316
14.1 Basis for the Design of Antenna Constructions......Page 317
14.2 Wind and Ice Loads......Page 318
References......Page 321
Part 4: Test Arrangements and Results of
Microwave Components Manufactured with
Alternative Technologies......Page 322
15.1.1 Measuring Dimensional Uncertainties......Page 324
15.1.2 Measuring Geometric Tolerances......Page 325
15.3 Surface Properties......Page 331
15.3.2 Surface Defects Caused During Manufacturing Processes......Page 332
15.3.3 Mechanical Composition of the Surface Texture......Page 333
15.3.4 Measuring Surface Roughness......Page 334
15.3.6 Wear Measurement......Page 336
15.4 Tests for Hermetic Enclosures......Page 338
References......Page 339
16 Selecting Microwave Test Instrumentation......Page 342
16.1 Vector Network Analyzers......Page 343
16.2 Spectrum Analyzers......Page 344
16.3 Signal Generators......Page 345
References......Page 346
17.1 Passive Intermodulation in Welded Components......Page 348
17.2 Testing the Shielding Performance of Microwave Enclosures......Page 350
17.3 Experiments on the Input Impedance of Waveguide to Coax Transitions......Page 351
17.4 Analyzing the Effects of Mechanical Defects on the Performance of Small Phased Array Antennas......Page 353
18 Summary......Page 360
List of Acronyms......Page 364
List of Symbols......Page 370
Requirements for Viewing Appendixes A, B, and C......Page 374
About the Authors......Page 376
Index......Page 378