Microstructural Randomness and Scaling in Mechanics of Materials (Modern Mechanics and Mathematics)

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

An area at the intersection of solid mechanics, materials science, and stochastic mathematics, mechanics of materials often necessitates a stochastic approach to grasp the effects of spatial randomness. Using this approach, Microstructural Randomness and Scaling in Mechanics of Materials explores numerous stochastic models and methods used in the mechanics of random media and illustrates these in a variety of applications.The book first offers a refresher in several tools used in stochastic mechanics, followed by two chapters that outline periodic and disordered planar lattice (spring) networks. Subsequent chapters discuss stress invariance in classical planar and micropolar elasticity and cover several topics not yet collected in book form, including the passage of a microstructure to an effective micropolar continuum. After forming this foundation in various methods of stochastic mechanics, the book focuses on problems of microstructural randomness and scaling. It examines both representative and statistical volume elements (RVEs/SVEs) as well as micromechanically based stochastic finite elements (SFEs). The author also studies nonlinear elastic and inelastic materials, the stochastic formulation of thermomechanics with internal variables, and wave propagation in random media. The concepts discussed in this comprehensive book can be applied to many situations, from micro and nanoelectromechanical systems (MEMS/NEMS) to geophysics.

Author(s): Martin Ostoja-Starzewski
Edition: 1
Year: 2007

Language: English
Pages: 352