In the past 50 years, great progress has been made in developing artificial fiber-reinforced composite materials, generally using filaments with microscopic diameters. An array of reinforcement forms can be used in commercial applications - with the microstructure being a critical factor in realizing the required properties in a material.Microstructural Characterisation of Fibre-Reinforced Composites comprehensively examines the application of advanced microstructural characterization techniques to fiber-reinforced composites.
Author(s): John Summerscales
Edition: 1
Year: 1998
Language: English
Pages: 320
Microstructural characterisation of fibre-reinforced composites......Page 3
Contents......Page 5
Preface......Page 8
Acknowledgements......Page 10
List of contributors......Page 11
Table of Contents......Page 0
1.2 Microscopy of polymers and composites......Page 13
1.2.1 Defects......Page 14
1.3.1 Microtexture......Page 15
1.3.3 Stochastic geometry and tessellated space......Page 16
1.3.4 Fractal geometry......Page 17
1.4.1 Image analysis......Page 18
1.4.3 Optical coherence tomography......Page 19
1.4.4 Microradiography......Page 20
1.4.5 Magnetic resonance......Page 21
References......Page 23
2.1 Introduction......Page 29
2.1.2 Flexible textile composites......Page 30
2.2.1 Principles......Page 34
2.2.2.1 Flexible textile composites......Page 38
2.2.2.2 Composite fabrics......Page 39
2.2.2.3 Composite yarns......Page 41
2.2.2.4 Composite fibers......Page 43
2.3.1 Composite fibers......Page 44
2.3.2 Composite yarns......Page 51
2.3.3 Composite fabrics......Page 55
2.4 Conclusion......Page 63
Microscopy and imaging......Page 64
Flexible textile composites......Page 65
3.1 Introduction......Page 67
3.1.1 Definition of the measurement problem......Page 68
3.1.2 Comparison of measurement techniques......Page 71
3.1.3 Characterisation parameters for fibre orientation states......Page 74
3.1.4 Measurement bias and experimental error with the 2D optical technique......Page 76
3.1.5 2D optical microscopy using many sections and pattern matching......Page 83
3.2 Confocal laser scanning microscopy......Page 85
3.2.1 Basic principles......Page 86
3.2.2 Biorad MRC series confocal laser scanning microscopes......Page 89
3.2.3 Calibration issues......Page 90
3.2.4 Optical sectioning capability of the CLSM......Page 91
3.2.5 Reflection/fluorescence modes of operation......Page 94
3.2.6 Methods for 3D reconstruction......Page 97
3.3 CLSM measurements of polymer composites......Page 99
3.3.1 Automation of image acquisition with CLSMs......Page 102
3.3.2 Refractive index and the apparent depth problem......Page 105
3.3.3 Optimisation of image processing......Page 108
3.3.4 Maximum depth achievable......Page 112
3.4 Application areas for CLSM in composite research......Page 116
3.4.1 Low level voidage/porosity......Page 117
3.4.2 Particulate/spherical fillers in thin films, coatings and composites......Page 119
3.4.3 Short glass fibre reinforcements......Page 122
3.4.4 Unidirectional glass fibre reinforcements......Page 127
3.4.4.1 Mapping of local fibre curvatures......Page 131
3.4.4.2 Characterising 3D fibre waviness......Page 134
3.5 Future prospects for confocal microscopy......Page 137
3.5.1 Automated scanning over large volumes......Page 138
3.5.2.2 New research opportunities......Page 140
3.5.2.3 New measurement standards......Page 141
3.5.3 Concluding remarks......Page 142
Acknowledgements......Page 144
References......Page 145
4.1 Introduction......Page 150
4.2.2 Representation schemes......Page 151
4.2.2.2 Construction......Page 152
4.2.3 Curved objects......Page 155
4.2.3.2 Rational......Page 156
4.2.3.3 B-Spline......Page 157
4.2.3.4 Expansion......Page 160
4.2.4 Manipulation......Page 161
4.2.5 Yarn and fiber assemblies......Page 162
4.3.2 Integrating database......Page 165
4.3.3 Developing models......Page 167
4.4 Conclusions......Page 168
References......Page 170
5.1 Introduction......Page 171
5.2 Yarn and cloth terminology......Page 172
5.2.2 Fabrics......Page 173
5.2.3 Remarks about fabric geometry......Page 175
5.3.1 Yarn path......Page 176
5.3.2 Internal geometry......Page 177
5.3.3 Nesting......Page 178
5.4.2 Computer-aided image processing......Page 179
5.4.2.2 Identification of yarn boundaries......Page 180
5.4.2.3 Extraction of yarn shape measures from the boundary functions......Page 182
5.4.2.4 Other measures from boundary functions......Page 184
5.5 Role of yarn shape in composite properties......Page 186
5.6 Unresolved issues......Page 188
References......Page 189
6.1 Introduction......Page 191
6.2 Alternatives to microscopy......Page 193
6.3 Specimen preparation and examination......Page 194
6.4.1 Stereology......Page 195
6.4.2 Determination of volume fraction......Page 196
6.4.4 Hybrid composites......Page 197
6.5.1.1 Variance analysis......Page 200
6.5.1.2 Structuring elements......Page 201
6.5.2 Rigorous quantitative methods......Page 202
6.6.1 Elastic properties......Page 204
6.6.2 Fracture properties......Page 205
6.7.1 Vacuum-bag manufacture......Page 206
6.7.2 Resin transfer moulding......Page 207
6.8 Concluding remarks......Page 209
References......Page 210
7.1 Introduction......Page 216
7.2.1.3 Effect of a specific coating......Page 217
7.2.2.1 The microscope......Page 218
7.2.2.2 Definitions......Page 220
7.3.1 Study of carbon fibres......Page 221
7.3.2 Study of the surface of the untreated fibre......Page 223
7.3.3 Study of the surface of the treated fibres......Page 224
7.3.4 Scanning tunnelling microscopy......Page 226
7.3.5 Observation of interfacial phenomena......Page 228
7.3.6 Mechanical characteristics of the composites......Page 231
7.3.7 Relationships between interfacial characteristics and mechanical properties......Page 232
7.4 Conclusion......Page 233
References......Page 234
8.1 Introduction......Page 236
8.2.1 Conventional measurements......Page 237
8.2.3 Producing calibration curves for high performance fibres......Page 239
8.3 Micromechanics of reinforcement in composites......Page 242
8.3.1 Stress transfer in single fibre model composites......Page 246
8.3.1.1 Effect of fibre treatment......Page 249
8.3.1.2 Effect of fibre sizing......Page 250
8.3.2 Stress transfer in composites......Page 253
8.3.2.2 Full unidirectional coupons......Page 255
8.4 Conclusions......Page 265
References......Page 266
9.1 Introduction......Page 268
9.2 Glass-matrix composites......Page 269
9.2.1 Experimental procedure......Page 270
9.2.2 Composite microstructure......Page 272
9.2.3 Matrix crystalline phase......Page 276
9.2.4 Matrix microcracking......Page 279
9.3.1 Magnesium aluminosilicate matrix composites......Page 283
9.3.1.1 MAS/SiCt......Page 284
9.3.1.2 MAS/SiCm......Page 289
9.3.2 Calcium aluminosilicate CAS/SiC......Page 290
9.4.1 Experimental procedure......Page 297
9.4.3 As-fabricated Ti-6Al-4V/SiCm......Page 298
9.4.4 Ti3Al/SiCm......Page 303
9.4.5 Heat treated Ti-6Al-4V/SiCm......Page 304
9.5 Conclusions......Page 309
References......Page 313