Micromanufacturing and Nanotechnology

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Micromanufacturing and Nanotechnology is an emerging technological infrastructure and process that involves manufacturing of products and systems at the micro and nano scale levels. Development of micro and nano scale products and systems are underway due to the reason that they are faster, accurate and less expensive. Moreover, the basic functional units of such systems possesses remarkable mechanical, electronic and chemical properties compared to the macro-scale counterparts. Since this infrastructure has already become the prefered choice for the design and development of next generation products and systems it is now necessary to disseminate the conceptual and practical phenomenological know-how in a broader context. This book incorporates a selection of research and development papers. Its scope is the history and background, underlynig design methodology, application domains and recent developments.

Author(s): Nitaigour P. Mahalik
Edition: 1
Publisher: Springer
Year: 2005

Language: English
Pages: 491

Preface......Page 8
Contents......Page 11
Authors......Page 21
1.1 Background......Page 24
1.2.1 Precision Engineering......Page 25
1.2.2 Micromilling and Microdrilling......Page 26
1.3 Microelectromechanical Systems (MEMS)......Page 28
1.3.1 An Example: Microphenomenon in Electrophotography......Page 29
1.4 Microelectronics Fabrication Methods......Page 30
1.4.2 Surface Micromachining......Page 31
1.6 Micromechatronics......Page 32
1.8 Optically Variable Device......Page 33
1.10 Space Micropropulsion......Page 34
1.12 Nanotechnology......Page 35
1.13 Carbon Nanotubes and Structures......Page 36
1.14 Molecular Logic Gates......Page 37
1.15 Microdevices as Nanolevel Biosensors......Page 38
1.16 Crosslinking in C60 and Derivatisation......Page 39
1.18 References......Page 40
2.1 Introduction......Page 42
2.2 Driving Principles for Actuation......Page 43
2.3 Fabrication Process......Page 44
2.4.1 Mechanical sensors......Page 46
2.4.2 Accelerometer, Cantilever and Capacitive Measurement......Page 47
2.4.3 Microphone......Page 48
2.4.5 Mechanical Actuators......Page 49
2.5 Thermal MEMS......Page 51
2.5.1 Thermometry......Page 52
2.5.3 Microhotplate Gas Sensors......Page 53
2.6 Magnetic MEMS......Page 54
2.7 MOEMS......Page 58
2.8 Spatial Light Modulator......Page 60
2.9 Digital Micromirror Device......Page 61
2.10 Grating Light Valve (GLV)......Page 63
2.11 References......Page 65
3.2. Generation of Laser Light......Page 68
3.3 Properties of Laser Light......Page 72
3.3.2 Directionality......Page 73
3.3.5 Spatial Profile......Page 74
3.4 Practical Lasers......Page 75
3.5.2 Absorption and Reflection of Laser Light......Page 77
3.5.3 Application Technology Fundamentals......Page 79
3.6 References......Page 84
4.1 Introduction......Page 86
4.2 Overview of Geometrical Error Calibration......Page 87
4.2.1 Error Measurement System......Page 89
4.2.2 Accuracy Assessment......Page 90
4.3 Geometrical Error Compensation Schemes......Page 91
4.3.1 Look-up Table for Geometrical Errors......Page 92
4.3.2 Parametric Model for Geometrical Errors......Page 93
4.4 Experimental Results......Page 96
4.4.2 Linear Errors......Page 97
4.4.4 Angular Errors......Page 100
4.4.5 Squareness Error......Page 101
4.5 Conclusions......Page 102
4.6 Reference......Page 104
5.2 Wet Bulk Micromachining (WBM)......Page 106
5.3 Review......Page 107
5.4 Crystallography and its Effects......Page 108
5.4.1 An Example......Page 109
5.5.1 Silicon as a Substrate......Page 110
5.5.3 Stress and Strain......Page 111
5.6 Wet Etching Process......Page 115
5.6.2 Reaction Phenomena......Page 116
5.6.3 Isotropic Etch Curves......Page 117
5.6.4 Masking......Page 119
5.7 Anisotropic Etching......Page 120
5.7.2 Masking for Anisotropic Etchants......Page 121
5.8.1 Boron Diffusion Etch-stop......Page 122
5.8.2 Electrochemical Etch-stop......Page 123
5.8.3 Thin Films and SOI Etch-stop......Page 124
5.9.1 RE Consumption......Page 125
5.9.2 Corner Compensation......Page 126
5.11 References......Page 127
6.1 Introduction......Page 130
6.2 Photolithography......Page 131
6.3 Surface Micromachining......Page 134
6.3.1 Bulk versus Surface Micromachining......Page 135
6.4.1 Isolation Layer......Page 136
6.4.3 Structural Material......Page 137
6.4.4 Selective Etching......Page 138
6.5 Properties......Page 139
6.5.1 Adhesion......Page 140
6.5.2 Stress......Page 141
6.5.3 Stiction......Page 144
6.6 Wafer Bonding......Page 145
6.6.1 Anodic Bonding......Page 146
6.6.2 Fusion Bonding......Page 147
6.7 Summary......Page 148
6.8 References......Page 150
7.2 Introduction......Page 154
7.3.1 The Security Hologram......Page 156
7.3.2 The Kinegram......Page 157
7.3.3 The Catpix Electron Beam Lithography Microstructure......Page 160
7.3.4 Structural Stability......Page 161
7.3.5 The Pixelgram Palette Concept......Page 162
7.3.6 The Exelgram Track based OVD Microstructure......Page 164
7.3.7 Covert Image Micrographic Security Features......Page 167
7.3.9 Vectorgram Image Multiplexing......Page 168
7.3.10 Interstitial Groove Element Modulation......Page 171
7.4 Generic OVD Microstructures......Page 172
7.4.1 Optically Variable Ink Technology......Page 173
7.4.2 Diffractive Data Foils......Page 174
7.4.3 Biometric OVD Technology......Page 177
7.5 NanoCODES......Page 180
7.5.1 The Micromirror OVD......Page 182
7.5.2 Origination of a Micromirror OVD......Page 183
7.5.3 Summary of Micromirror OVD Optical Effects......Page 187
7.6 Conclusions......Page 189
7.7 References......Page 190
8.1 Introduction......Page 194
8.2.2 Lapping......Page 196
8.3 Advanced Finishing Processes (AFPs)......Page 197
8.3.1 Abrasive Flow Machining (AFM)......Page 198
8.3.2 Magnetic Abrasive Finishing (MAF)......Page 201
8.3.3 Magnetorheological Finishing (MRF)......Page 203
8.3.4 Magnetorheological Abrasive Flow Finishing (MRAFF)......Page 206
8.3.5 Magnetic Float Polishing (MFP)......Page 211
8.3.6 Elastic Emission Machining (EEM)......Page 212
8.3.7 Ion Beam Machining (IBM)......Page 213
8.3.8 Chemical Mechanical Polishing (CMP)......Page 215
8.4 References......Page 216
9.1 Introduction......Page 220
9.2 Subsystems and Devices for Miniaturised Spacecrafts Micropropulsion......Page 224
9.3 Propulsion Systems......Page 230
9.3.5 Monopropellant and Bipropellant Systems......Page 231
9.4 Realisation of a Cold-Gas Microthruster......Page 232
9.4.1 Gas- and Fluid Dynamics......Page 233
9.4.2 Prototyping......Page 234
9.6 References......Page 240
10.2 Nanotechnology and Carbon Nanotube Promises......Page 242
10.3 Growing Interest in Carbon Nanotube......Page 244
10.4 Structure and Properties of Carbon Nanotubes......Page 246
10.5 Production of Carbon Nanotube......Page 248
10.5.1 Chemical Vapour Deposition......Page 249
10.5.2 Arc Discharge......Page 250
10.5.3 Laser Ablation......Page 251
10.5.4 Mechanisms of Growth......Page 252
10.5.5 Purification of Carbon Nanotube......Page 253
10.6.1 Electrical Transport of Carbon Nanotubes for FET......Page 254
10.6.2 Computers......Page 256
10.6.3 CNT Nanodevices for Biomedical Application......Page 257
10.6.4 X-Ray Equipment......Page 258
10.6.5 CNTs for Nanomechanic Actuator and Artificial Muscles......Page 259
10.6.6 Fuel Cells......Page 260
10.6.7 Membrane Electrode Assembly......Page 261
10.6.8 Mechanical and Electrical Reinforcement of Bipolar Plates with CNTs......Page 262
10.6.9 Hydrogen Storage in CNTs......Page 263
10.7 References......Page 264
11.2 History of Fullerenes......Page 270
11.3.1 Y-shaped......Page 271
11.3.6 Cone Shape End Caps of MWCNTs......Page 275
11.4.3 Structure of C60, C59, C58, C57......Page 276
11.4.4 The Smaller Fullerene C50......Page 277
11.5 Structure of Carbon Nanoballs (CNBs)......Page 279
11.6.3 Helical CNFs......Page 280
11.7 Porous Carbon......Page 281
11.8.3 Optical Properties......Page 282
11.8.5 Periodic Properties......Page 283
11.9.1 Carbon Nanotubes......Page 284
11.9.2 Fullerenes......Page 285
11.9.4 Nanofibers......Page 286
11.10.2 Hydrogen Storage......Page 288
11.10.3 Lithium Intercalation......Page 289
11.10.4 Electrochemical Supercapacitors......Page 290
11.10.5 Molecular Electronics with CNTs......Page 291
11.11 Composite Materials......Page 293
11.13 References......Page 294
12.2 Logic Gates......Page 298
12.3 Fluorescence based Molecular Logic Gates......Page 300
12.4 Combinational Logic Circuits......Page 308
12.5 Reconfigurable Molecular Logic......Page 309
12.6 Absorption based Molecular Logic Gates......Page 310
12.7 Molecular Logic Gates: Electronic Conductance......Page 316
12.9 References......Page 318
13.1 Introduction......Page 322
13.2 Principles......Page 323
13.3 Static Deformation Approach......Page 324
13.4 Resonance Mode Approach......Page 325
13.5 Heat Detection Approach......Page 328
13.6.1 Si-based Cantilever......Page 329
13.6.2 Piezoresistive Integrated Cantilever......Page 330
13.6.3 Piezoelectric Integrated Cantilever......Page 331
13.7.1 Optical Method......Page 332
13.7.3 Piezoresistive Method......Page 333
13.7.5 Piezoelectric Method......Page 334
13.8.1 DNA Detection......Page 336
13.8.2 Protein Detection......Page 338
13.8.3 Cell Detection......Page 340
13.9 Conclusions......Page 341
13.10 References......Page 342
14.1 Introduction......Page 346
14.2 Micro Energy and Chemical Systems......Page 350
14.2.2 Applications of MECS Technology......Page 351
14.3.1 Challenges......Page 353
14.3.2 Feature Sizes......Page 354
14.3.3 Microlamination......Page 355
14.4 Dimensional Control in Microlamination......Page 357
14.4.1 Effects of Patterning on Microchannel Array Performance......Page 358
14.4.2 Theory......Page 359
14.4.3 Microchannel Fabrication......Page 360
14.4.4 Results......Page 361
14.5 Sources of Warpage in Microchannel Arrays......Page 364
14.5.1 Analysis......Page 366
14.5.2 Results......Page 369
14.6 Effects of Registration and Bonding on Microchannel Array Performance......Page 370
14.7 Geometrical Constraints in Microchannel Arrays......Page 371
14.8 Economics of Microlamination......Page 374
14.9 References......Page 375
15.1 Introduction......Page 380
15.2.1 Experimental and Phenomenological......Page 381
15.2.2 Computer Modeling......Page 385
15.3.1 Theory......Page 386
15.3.2 Characteristic Behavior......Page 393
15.4.1 Optical......Page 396
15.4.4 Biological......Page 398
15.5 Concluding Remarks......Page 399
15.6 References......Page 400
16.1 Introduction......Page 406
16.2.1 Polymeric Materials......Page 407
16.2.2 Molecular Materials......Page 408
16.3 Self-Assembled Monolayers......Page 410
16.4 Summary and Outlook......Page 414
16.5 References......Page 415
17.1 Introduction......Page 420
17.2 Historical Development......Page 421
17.3 Principles of ENFOL......Page 423
17.4 Mask Requirements and Fabrication......Page 424
17.5.1 Exposure Conditions......Page 425
the Diffraction Limit......Page 426
17.6.1 Subtractive Pattern Transfer......Page 428
17.6.2 Additive Pattern Transfer......Page 429
17.7 Simulations......Page 430
17.7.1 Simulation Methods and Models......Page 432
17.7.2 Intensity Distribution......Page 433
17.7.3 Depth of Field (DOF)......Page 434
17.7.4 Exposure Variations due to Edge Enhancements......Page 436
17.8 Nanolithography using Surface Plasmons......Page 437
17.8.1 Evanescent Interferometric Lithography (EIL)......Page 438
17.8.2 Planar Lens Lithography (PLL)......Page 439
17.8.3 Surface Plasmon Enhanced Contact Lithography (SPECL)......Page 442
17.9 Conclusions......Page 444
17.10 References......Page 445
18.1 Current State of the Knowledge and Needs......Page 448
18.2 Nanoparticles in Heterogeneous Catalysis......Page 450
18.3 Oxygen Electroreduction Reaction on Carbon-Supported Platinum Catalysts......Page 452
18.4 Carbon Nanotubes as Catalyst Supports......Page 455
18.5 Concluding Remarks......Page 460
18.6 References......Page 461
19.1 Introduction......Page 464
19.2 Experimental Design......Page 465
19.3 Direct Amidation of Carboxylic Functionalities on Oxidised SWNT Tips......Page 466
19.4 Direct Amine Addition to Closed Caps and Wall Defects of Pristine MWNTs......Page 468
19.6 References......Page 473
20.1 Introduction......Page 476
20.2.1 Analytical Instruments......Page 477
20.3.1 (1,8)-Diaminooctane-derivatised C60 Powder......Page 478
20.3.2 1,8-Diaminooctane-derivatised C60 Films......Page 479
Index......Page 486