Microbial Technology for Sustainable E-waste Management

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book, besides discussing challenges and opportunities, will reveal the microbe-metal interactions and strategies for e-waste remediation in different ecosystems.  It will unveil the recent biotechnological advancement and microbiological approach to sustainable biorecycling of e-waste such as bioleaching for heavy metal extraction, valorization of precious metal, biodegradation of e-plastic, the role of the diverse microbial community in e-waste remediation, genetically engineered microbes for e-waste management, the importance of microbial exopolysaccharides in metal biosorption, next-generation technologies, omics-based technologies etc. It also holds the promise to discuss the conservation, utilization and cataloging indigenous microbes in e-waste-polluted niches and promising hybrid technology for sustainable e-waste management.

Revolution in the area of information technology and communication is constantly evolving due to scientific research and development. Concurrently, the production of new electrical and electronic equipment also thus uplifting in this era of revolution. These technological advancements certainly have problematic consequences which is the rise of huge amounts of electronic obsoletes or electronic waste (e-waste). Improper management of both hazardous and nonhazardous substances of e-waste led to a major concern in our digital society and environment. Therefore, a sustainable approach including microbial candidates to tackle e-waste is the need of the hour.

Nevertheless, the continuous demand for new-generation gadgets and electronics set this high-tech evolution to a new frontier in the last few years. With this continuing trend of technological development, e-waste is expanding exponentially worldwide. In the year of 2019, the worldwide generation of e-waste was approximately 53.6 Mt, of which only about 17.4% of e-waste was collected and recycled, and the other 82.6% was not even documented. E-waste contains various heterogeneous waste complexes such as metals (60%), blends of many polymers (30%) and halogenated compounds, radioactive elements and other pollutants (10%), respectively. The sustainable, efficient, and economic management of e-waste is thus, a challenging task today and in the coming decades. Conventional techniques such as the use of chemicals, incineration and informal ways of e-waste dismantling trigger serious health risks and contamination to the human population and environment, respectively due to the liberation of toxic and hazardous substances from the waste. In this context, bio-candidates especially microorganisms could be sharp-edged biological recycling tools to manage e-waste sustainably. As microbes are omnipresent and diverse in their physiology and functional aspects, they offer a wide range of bioremediation.

Author(s): Prasenjit Debbarma, Saurabh Kumar, Deep Chandra Suyal, Ravindra Soni
Publisher: Springer
Year: 2023

Language: English
Pages: 348
City: Cham

Preface
Contents
1 Current Scenario on Conventional and Modern Approaches Towards Eco-friendly Electronic Waste Management
1.1 Introduction
1.2 Significance of E-waste in the Current Scenario
1.3 Data on Generation and Management in India and Globe
1.3.1 Data on Generation
1.3.2 E-waste Management in India
1.4 Types of E-waste
1.4.1 Large Equipment
1.4.2 Temperature Exchange Equipment
1.4.3 Screens and Monitors
1.4.4 Lamps
1.4.5 Small Equipment
1.4.6 Small Information Technology and Telecommunication Equipment
1.5 Traditional Approaches to E-waste Management
1.6 Modern and Advanced Approaches in E-waste Management
1.6.1 Life Cycle Assessment (LCA)
1.6.2 Material Flow Analysis (MFA)
1.6.3 Multi-criteria Analysis (MCA)
1.7 Environmental Damages and Problems
1.7.1 Effect on Soil
1.7.2 Effect on Air
1.7.3 Effect on Water
1.7.4 Effect on Human Health
1.8 Regulations Mechanism of E-waste in India and Other Countries
1.8.1 Regulations for E-waste Management in India
1.8.2 E-waste Regulations—European Union of Countries (EU)
1.8.3 E-waste Regulations—USA
1.8.4 Regulations in China Regarding E-waste
1.8.5 E-waste Legislations in Korea
1.8.6 E-waste Regulations in Bangladesh
1.8.7 Extended Producer Responsibility (EPR)
1.9 E-waste Management Relevance in SDG and Ecosystem Restoration
1.10 Challenges and Future Perspectives of E-waste Management
1.11 Conclusion
References
2 Electronic Waste and Their Management Strategies
2.1 Introduction
2.2 Root-Cause and Constituents of E-waste
2.3 E-waste and Toxicity
2.3.1 Effect on Humans
2.3.2 Effects on Plants
2.4 E-waste Disposal
2.5 Rules and Regulations of the Land
2.6 Capability of Reprocessing of E-waste in India
2.7 Global Scenario on E-waste Generation (2019–2030)
2.8 Future Scenario in E-waste Management
2.9 Difference in E-waste Management in India with the Other Selected Countries
2.10 Eco-friendly Way of Waste Management
2.11 Conclusion
References
3 E-waste Management Practices in India: Challenges and Approaches
3.1 Introduction
3.1.1 Rationale
3.1.2 Effects of E-waste
3.2 E-waste Management in India: Challenges
3.3 E-waste Recycling Practices in India
3.3.1 Informal Sector
3.3.2 Formal Sector
3.3.3 Current Technologies in E-waste Management
3.4 International Efforts
3.5 Legislations Related to E-waste
3.6 Summary
References
4 Bioleaching for Heavy Metal Extraction from E-waste: A Sustainable Approach
4.1 Introduction
4.2 Bioleaching
4.2.1 Direct Bioleaching Pathway
4.2.2 Indirect Bioleaching Pathway
4.3 Extraction of Heavy Metals from PCBs
4.4 Extraction of Heavy Metals from Spent Batteries
4.5 Conclusion
References
5 Bioremediation Strategies for Sustainable E-waste Management
5.1 Introduction
5.2 Electronic Waste Composition and Its Impact on the Environment
5.3 Conventional Methods of E-waste Management
5.4 Challenges in Managing E-waste
5.5 Bioremediation of E-waste
5.5.1 Phytoremediation
5.5.2 Microbial Remediation
5.6 Prospective of Bio-engineered Microorganisms in E-waste Management
5.7 Future Scopes and Prospects
5.8 Conclusion
References
7 Bioremediation: A Sustainable Way for E-waste Management
6 Challenges and Approaches in E-waste Management
6.1 Introduction
6.2 Components of E-wastes
6.3 Effects of E-waste and Its Improper Management
6.4 Constraints in E-waste Management
6.5 Global Perspectives on E-wastes
6.6 Management of E-waste
6.6.1 Bioleaching
6.6.2 Biosorption
6.6.3 Bioaccumulation
6.6.4 Biotransformation
6.6.5 Biomineralization
6.7 Conclusion
References
7.1 Introduction
7.2 E-waste Composition
7.2.1 Organic Part of Composition
7.3 Different Strategies for E-waste Bioremediation
7.3.1 Chemical Leaching
7.3.2 Biological Leaching
7.3.3 Biotransformation
7.3.4 Biosorption
7.3.5 Consortia or Mixed Culture Mediated E-waste Bioremediation
7.4 Factors Influencing Leaching Purpose
7.5 Impact of E-waste on Environment and Human Health
7.5.1 Impact on Human Health
7.6 Future Strategies for Minimizing E-waste
7.7 Conclusion
References
8 Role of Bacteria for the Recovery of Precious Metals from E-waste
8.1 Introduction
8.2 Metals in E-waste
8.3 Recovery of Precious Metals from E-waste
8.4 Advantages and Disadvantages of Using Bacteria for Bioremediation of Electronic Waste
8.5 Challenges and Future Prospects
References
9 Importance of Microorganisms in Metal Recovery from E-waste
9.1 Introduction
9.2 E-waste
9.2.1 Sources of E-waste
9.2.2 Composition of E-waste
9.3 Recovery of Precious Metals from E-waste
9.3.1 Pyrometallurgy and Hydrometallurgy
9.3.2 Biohydrometallurgy
9.4 Bioleaching
9.4.1 Microorganisms Involved in Bioleaching of Precious Metals
9.4.2 Mechanism of Bioleaching
9.4.3 Precious Metals and Their Bioleaching
9.4.4 Role of Algae in E-waste Management
9.4.5 Benefits of Bioleaching
9.4.6 Demerits of Bioleaching
References
10 Bioleaching: A Sustainable Resource Recovery Strategy for Urban Mining of E-waste
10.1 Introduction
10.2 E-waste Composition
10.3 Hazardous Impact of E-waste
10.4 E-waste Management
10.5 Biometallurgy or Biohydrometallurgy
10.6 Microorganism for Bioleaching
10.7 Bioleaching Pathways
10.7.1 Direct Bioleaching
10.7.2 Indirect Bioleaching
10.8 Application of Bioleaching in E-waste Management
10.9 Hybrid Methods for Metal Recovery
10.10 Conclusion and Future Perspectives
References
11 Microbial Degradation of E-plastics in Diverse Ecosystems
11.1 Introduction
11.2 Types of Plastics
11.3 E-plastic (Electronic Plastic Waste): Another Form of E-waste
11.4 Degradation: A Global Challenge
11.5 Microbial Degradation
11.5.1 Bacterial Biodegradation of E-plastic Waste
11.5.2 Fungal Biodegradation of E-plastic Waste
11.6 Conclusion
References
12 Metal Bioleaching from E-waste Using Fungal Communities
12.1 Introduction
12.2 E-waste Sources and Composition
12.3 Influencing Factors for Metal Bioleaching
12.3.1 pH
12.3.2 Temperature
12.3.3 Fungal Consortium
12.3.4 Biosorption
12.3.5 Bioprecipitation
12.4 Common Metal Solubilization Reaction Mechanisms
12.4.1 Halogen Leaching
12.4.2 Thiourea Leaching
12.4.3 Thiosulfate Leaching
12.4.4 Cyanide Leaching
12.4.5 Ferric Leaching
12.5 Fungal Bioleaching of E-waste
12.6 Conclusion
References
13 Association of Algae to Water Pollution and Waste Water Treatment
13.1 Introduction
13.2 Microalgae
13.3 Algal Blooms
13.4 Categories of Algae
13.4.1 Blue-Green Algae
13.4.2 Green Algae
13.4.3 Euglenoids
13.4.4 Yellow-Green Algae
13.4.5 Diatoms
13.4.6 Red Algae
13.5 Algae and Water Pollution
13.6 Algae as Bioindicators
13.6.1 Characteristics of Bioindicators
13.6.2 Saprobic System
13.7 Use of Algae in Wastewater Treatment
13.8 Conclusion
References
14 E-waste and Its Management by Using Algae
14.1 Introduction
14.2 Toxic Elements in E-waste Are Potentially Hazardous to Humans
14.3 Toxic Chemicals in E-waste and Their Pollutants
14.4 Recent Worldwide E-waste Output Statistics
14.5 Advantages and Drawbacks Involved in Managing E-waste
14.6 Metal Recovery Through Microbial-Mediated Techniques
14.7 Significance of Microbial Algae in the Remediation of E-waste
14.8 Conclusion and Future Prospect
References
15 Bioremediation of E-waste Through Microbial Exopolysaccharides: A Perspective
15.1 Introduction
15.2 E-waste and Associated Hazardous Substances
15.3 Conventional Treatment Techniques for E-waste Management and Its Impact on Human and Environmental Health
15.4 An Array of Dynamic Sources of Microbial EPS
15.5 The Potential Role of EPS in Microbial Remediation of E-waste
15.6 Mechanism of EPS-Mediated Biosorption of Heavy Metals
15.7 Sustainable Bioremediation Strategies for E-waste Through EPS-Metal Ion Interaction
15.7.1 Homogenous Consortial EPS
15.7.2 Heterogeneous Consortial EPS (HCE)
15.7.3 Immobilized EPS
15.7.4 Dead Biomass EPS (DBE)
15.7.5 Chemically Modified EPS
15.8 Future of EPS in Hybrid Techniques for Metal Extraction
15.9 Concluding Remarks
References
16 Genetically Modified Microbes in E-waste Management: A Perspective
16.1 Introduction
16.2 Methods to Obtain Suitable Microorganism from the Environment
16.2.1 Shotgun Approach
16.2.2 Objective Approach
16.3 General Mechanisms of Microbial Remediation
16.3.1 Bioleaching
16.3.2 Biosorption
16.3.3 Bioaccumulation
16.3.4 Biotransformation
16.3.5 Biomineralization
16.4 Microbes and Their Biological Significance in E-waste Management
16.4.1 Microbes Involve in Recovery of Gold
16.4.2 Microbes Recovery of Rare Earth Metals
16.4.3 Microbes Involved in Recovery of Metals
16.5 Conclusion
References
17 Recent Trends in Biomining Microorganisms for Solid Waste Management
17.1 Introduction
17.2 History of Biomining
17.3 Mechanism Involved
17.4 Microorganism Involved in Biomining
17.4.1 Acidithiobacillus ferrooxidans
17.4.2 Acidithiobacillus caldus
17.4.3 Leptospirillum
17.4.4 Metallosphaera
17.4.5 Acidianus
17.4.6 Acidithiobacillus ferrivorans
17.4.7 Acidithiobacillus ferriphilus
17.5 Implementation of Genomics and Metagenomics for Microbial Biominners
17.6 Implementation of All-Omics in the Study of Microbial Biominners
17.7 Bioengineering Surfaces for Metal Recovery from Aqueous Solutions
17.8 Biomining as a New Aspect of Circularity of Waste Management
17.9 Conclusion and Future Perspectives
References
18 Plant–Bacteria Interaction in the Recovery of Metals from Electronic Waste
18.1 Introduction
18.2 Materials and Methods
18.2.1 Collection and Dismantling of Obsolete Computers and Cell Phones
18.2.2 Germination of M. sativa L. and L. culinaris Seeds and Transplanting to Pots
18.2.3 Preparation of Bacterial Inoculant
18.2.4 Treatments of Plants with PCB and Growing Conditions
18.2.5 Determination of Ag, Au, Cu, Pd, and Si in Plant Biomass
18.2.6 Statistical Analysis
18.3 Results and Discussion
18.4 Conclusions
References
19 E-waste Management: Prospects and Strategies
19.1 Introduction
19.1.1 Global E-waste Problem
19.1.2 E-waste Problem in India
19.2 Industrial Waste Treatment Techniques, Methods, Impact on the Environment, and Health Problem
19.2.1 Organic Chemicals Industries
19.2.2 Battery Manufacturing
19.2.3 Electric Power Plants
19.3 Constituents of E-waste
19.4 The Impact of E-waste on the Environment
19.5 Recycling of E-waste
19.6 Handling and Management of E-waste
19.6.1 Conventional Techniques
19.6.2 Green Approach
19.6.3 Phytoremediation for Electronic Waste
19.7 Conclusion
References
20 Role of Biotechnological Approaches for the Valorization of Precious Metals from E-waste
20.1 Introduction
20.2 Bioprocessing of E-waste for Valuable Metals’ Recovery
20.2.1 Valuable Metal Content of E-waste
20.2.2 Biotechnology for Extracting Precious Metals from E-waste
20.2.3 Bioleaching/Biometallurgical Technique
20.2.4 Microorganisms for Bioleaching
20.3 Bioleaching of Printed Circuit Boards (PCBs)
20.4 Bioleaching Reactions
20.5 Biometallurgical Versus Hydrometallurgical and Pyrometallurgical Processes
20.6 Bioelectrochemical, Biosorption, and Bioprecipitation Processes for Precious Metal Recovery
20.6.1 Biosorption
20.6.2 Bioelectrochemical
20.6.3 Bioprecipitation
20.7 Future Perspectives and Developments
References
21 A Summary of the Role of Microorganisms in Waste Management
21.1 Introduction
21.2 Classification of Waste
21.3 Waste Management System
21.4 Microorganisms in Waste Management
21.4.1 Composting
21.4.2 Biodegradation
21.4.3 Bioremediation
21.4.4 Biotransformation
21.4.5 Performance of Microbes in WMS
21.5 Advantages of Waste Management
21.6 Conclusion
References