Microalgal Biotechnology: Integration and Economy

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

With the high interest in renewable resources, the field of algal biotechnology has undergone a huge leap in importance. This book treats integrated approaches to bring the high potential of microalgae into application, accelerate the development of really working production processes and put finally the products on the market. So this book will allow protagonists and decision makers in academia, industry, and politics to get a clear picture of current possibilities and future trends in microalgal biotechnology.

Author(s): Clemens Posten, Christian Walter
Publisher: de Gruyter
Year: 2012

Language: English
Pages: xxii+320
City: Berlin/Boston

Microalgal Biotechnology: Integration and Economy......Page 4
Preface......Page 6
Contents......Page 8
List of contributing authors......Page 16
1 Introduction – Integration in microalgal biotechnology......Page 24
1.1 Integration on the process level......Page 25
1.2 Integration on the metabolic level......Page 27
1.3 Integration into environmental conditions......Page 28
1.4 Adaptation to cultural realities......Page 29
Integrated production processes......Page 34
2.1 Microalgae: An introduction......Page 36
2.2.1 Use and production of algal biomass......Page 38
2.2.2 Microalgae for human nutrition......Page 41
2.2.2.1 Spirulina (Arthrospira)......Page 42
2.2.2.2 Chlorella......Page 43
2.2.3 Microalgae for animal feed......Page 44
2.2.5 Microalgae in cosmetics......Page 45
2.2.6.1 PUFAs......Page 46
Pigments as antioxidants......Page 49
Pigments as natural colorants......Page 51
2.2.6.3 Polysaccharides......Page 52
2.2.7 Micro- and nanostructured particles......Page 54
2.2.8 Bulk chemicals......Page 56
2.2.9.1 Biodiesel......Page 58
2.2.9.2 Bio-ethanol......Page 63
2.2.9.3 Bio-hydrogen......Page 64
2.2.9.4 Bio-gas......Page 65
2.2.9.5 Biorefinery of microalgae......Page 66
References......Page 67
3.1 Introduction......Page 74
3.2 Natural Spirulina lakes in Myanmar......Page 75
3.3 Environmental parameters of Myanmar Spirulina lakes......Page 77
3.4.1 Harvesting......Page 80
3.4.2 Washing and dewatering......Page 81
3.4.3 Extrusion and sun drying......Page 82
3.4.4 Lake-side enhancement ponds......Page 84
3.5 Sustainable Spirulina production from volcanic crater lakes......Page 85
3.6 Myanmar Spirulina products......Page 86
3.7 Spirulina as biofertilizer......Page 87
3.10 Myanmar and German cooperation in microalgae biotechnology......Page 90
3.12 Conclusion......Page 91
References......Page 92
4 Case study of a temperature-controlled outdoor PBR system in Bremen......Page 96
References......Page 100
5.2 Microalgae use in aquaculture hatcheries......Page 102
5.2.1 Microalgal strains used in aquaculture hatcheries......Page 103
5.2.3.1 Microalgae as a feed source for filter-feeding aquaculture species......Page 105
5.2.3.2 Microalgae as a feed source for zooplanktonic live prey......Page 106
5.2.3.3 Benthic microalgae as a feed source for gastropod mollusks and echinoderms......Page 107
5.2.3.4 Addition of microalgae to fish larval rearing tanks......Page 108
5.2.3.5 Use of microalgal concentrates in aquaculture hatcheries......Page 110
5.3.1.1 Vitamins and minerals......Page 111
5.3.1.2 Pigments......Page 112
5.3.2 Algae as a potential feed ingredient: source of protein and energy......Page 113
5.4 Outlook......Page 118
References......Page 119
6.2 Algae in human food......Page 124
6.3 Microalgae as a solution against malnutrition: meet Spirulina......Page 125
6.4 Small-scale Spirulina production as a development tool......Page 126
6.5 Spirulina as a business to combat malnutrition......Page 127
6.6 Spirulina and its place in food aid and development policies......Page 129
6.7 Evidence of Spirulina in malnutrition......Page 130
References......Page 132
7.1 Biological hydrogen production of microorganisms......Page 134
7.2 Photobiological hydrogen production by green algae......Page 138
7.3 Photohydrogen production by cyanobacterial design cells......Page 140
7.4 Photohydrogen production by a “biobattery”......Page 142
7.5 Photobioreactor design for hydrogen production......Page 143
7.6 Photobioreactor geometry......Page 144
7.7 Process control......Page 145
7.8 Upscaling strategies......Page 146
References......Page 147
8.1 Introduction......Page 152
8.2.1 Chemical forms of astaxanthin......Page 153
8.2.2 Astaxanthin biosynthesis......Page 154
8.3.1 General characteristics......Page 156
8.3.2 Factors responsible for ax accumulation......Page 158
8.3.3 Industrial production of Haematococcus......Page 161
References......Page 163
9.1 Introduction......Page 168
9.2 Supply of natural compounds from microalgae......Page 169
9.3 Sterilizable photobioreactors......Page 170
9.4 Antiviral agents from microalgae......Page 173
9.5.2 Smart screening approach......Page 176
9.5.3 Basic process sequence......Page 177
9.5.4 Antiviral activity and immunostimulating effects of Arthrospira platensis......Page 179
9.5.5 Characterization of novel antiviral spirulan-like compounds......Page 180
9.6 Conclusion......Page 184
References......Page 185
10.1 Introduction......Page 192
10.1.1.1 Dinoflagellates......Page 193
10.1.2 Cyanobacteria......Page 195
10.1.2.1 Proteinase inhibitors......Page 197
10.1.2.2 Cytotoxic compounds......Page 198
10.1.2.3 Antiviral substances......Page 200
10.1.2.4 Antimicrobial metabolites......Page 202
10.1.2.5 Miscellaneous bioactivities......Page 203
10.1.3.1 Dolastatins as leads for anti-cancer drugs......Page 206
10.1.3.2 Cryptophycins as leads for anti-cancer drugs......Page 208
10.1.4 Outlook......Page 210
References......Page 212
Socio-economic and environmental considerations......Page 224
11.1 Introduction......Page 226
11.2.1 Approach......Page 228
11.2.2 Cell disruption, fractionation and mild cell disruption of organelles......Page 231
11.2.3 Extraction and fractionation of high-value components......Page 233
11.2.4 Economically feasible continuous biorefining concept......Page 234
11.3 Conclusions......Page 235
References......Page 236
12.1 Understanding the aims of the pilot plant......Page 238
12.3 Develop the process flow diagram......Page 239
12.5 Sizing of the units......Page 240
12.6 Plant layout......Page 242
12.7 HAZOP study......Page 244
12.9 Tender for plant construction......Page 247
References......Page 248
13.1.1 The need for domestication of microalgae......Page 250
13.1.2 Limitation of traditional approaches to strain improvement......Page 251
13.2.1 Chloroplast engineering in Chlamydomonas: progress and challenges......Page 252
13.2.2 A synthetic biology approach to chloroplast metabolic engineering......Page 255
13.2.3 Mitigating the risks and concerns of GM algae......Page 257
13.3.1 Improving light to biomass conversion by regulation of the pigment optical density of algal cultures......Page 258
13.4.1 PAM fluorimetry: a keyhole to look into the photosynthetic machinery......Page 260
13.4.2 Microalgae cultivation in photobioreactors: the fluctuating light effects......Page 263
13.4.3 Standard model for growth under an exponential light gradient......Page 267
13.5 Cells’ response to changing environments: the example of nitrogen limitation......Page 270
References......Page 272
14.1 Introduction......Page 276
14.2.1 Microalgae biorefinery for food, feed, fertilizer and energy production......Page 277
14.2.2 Biofuel production from low-cost microalgae grown in wastewater......Page 278
14.2.4 Hydrocarbon milking of modified Botryococcus microalgae strains......Page 280
14.2.5 Hydrogen production combining direct and indirect microalgae biophotolysis......Page 281
14.2.6 Direct ethanol production from autotrophic cyanobacteria......Page 282
14.3.1 Ocean......Page 285
14.4 Conclusions......Page 286
References......Page 287
15.1 Microalgal biotechnology......Page 290
15.2.1 Global fuel production and demand......Page 291
15.2.2 Global food production and demand......Page 292
15.2.3 Solar irradiance and areal requirement......Page 293
15.2.4 Global challenges......Page 294
15.3.1 Solar energy and geographic location......Page 295
15.3.2 Potential productivity......Page 297
15.3.3 Land resources......Page 299
15.3.4.1 CO2 requirements......Page 301
15.3.4.2 CO2 utilization and sequestration......Page 302
15.3.4.3 CO2 delivery......Page 303
15.3.5 Nutrient management and associated costs......Page 304
15.3.5.3 Nutrient recycling......Page 305
15.3.6 Water management and associated costs......Page 306
15.4.1 Addressing world production......Page 308
15.4.2 Economics of large-scale microalgal production systems......Page 310
15.4.3.1 Cultivation systems......Page 311
15.4.3.2 Impact of capital costs......Page 312
15.4.3.4 Harvesting and dewatering......Page 313
15.4.4 Dedicated versus integrated production models......Page 315
15.4.5 Business models......Page 317
15.4.6 Pathways to commercialization......Page 319
15.5 Conclusion......Page 322
References......Page 324
Index......Page 330