Today's consumers of portable electronics consumers are demanding devices not only deliver more power but also work healthy for the environment. This fact alone has lead major corporations like Intel, BIC, Duracell and Microsoft to believe that Microfuel Cells could be the next-generation power source for electronic products. Compact and readable, Microfuels Principles and Applications, offers engineers and product designers a reference unsurpassed by any other in the market. The book starts with a clear and rigorous exposition of the fundamentals engineering principles governing energy conversion for small electronic devices, followed by self-contained chapters concerning applications. The authors provide original points of view on all types of commercially available micro fuel cells types, including micro proton exchange membrane fuel cells, micro direct methanol fuel cells, micro solid oxide fuel cells and micro bio-fuel cells. The book also contains a detailed introduction to the fabrication of the components and the assembly of the system, making it a valuable reference both in terms of its application to product design and understanding micro engineering principles.
*An overview of the micro fuel cell systems and applications.
*A detailed introduction to the fabrication of the components and the assembly of the system.
*Original points of view on prospects of micro fuel cells.
Author(s): Tim Zhao
Publisher: Academic Press
Year: 2009
Language: English
Pages: 303
Cover Page
......Page 1
Copyright Page......Page 2
Preface......Page 3
About the Editor......Page 4
About the Contributors......Page 5
Electrolytes for Long-Life, Ultra Low-Power Direct Methanol Fuel Cells......Page 8
Introduction......Page 9
Potential Applications for Micro Fuel Cells......Page 10
Direct Methanol Fuel Cells......Page 11
Energy Efficiency and Device Life......Page 13
Perfluorinated Polymer Proton Exchange Membranes......Page 16
Nafion®......Page 18
Nafion Composite Membranes for Direct Methanol Fuel Cells......Page 19
Nafion/Silica Composites......Page 20
Nafion-Hetropoly Acid Composites......Page 24
Nafion-Zirconium Composites......Page 25
Nafion/PTFE Composites......Page 28
Nafion/Imidazole Composites......Page 29
Nafion Composites with Other Additives......Page 30
Non-Nafion Polymer Proton Exchange Membranes......Page 31
Polyvinyl Alcohol Blends......Page 32
Sulfonated Poly (Ether Ketone)s......Page 34
Sulfonated Poly (Phenylene Oxide)......Page 36
Polybenzimidazoles......Page 37
Polyimides......Page 40
Non-Nafion Polymer Organic/Inorganic Composites......Page 41
Silicate Glasses......Page 44
Phospho-Silicate Glasses......Page 46
Inorganic/Organic Nano Composite Membranes......Page 48
Conclusions......Page 50
References......Page 53
MEMS-Based Micro Fuel Cells as Promising Power Sources for Portable Electronics......Page 58
Introduction......Page 59
Microelectronics and MEMS......Page 63
Microfabricated Fuel Cells......Page 65
Hydrogen-Fed Fuel Cells......Page 68
Silicon-Based......Page 69
Metal-Based......Page 72
Polymer-Based......Page 74
Other Solutions......Page 76
Direct Methanol Fuel Cells......Page 78
Reformed Hydrogen Fuel Cells......Page 80
Direct Formic Acid Fuel Cells......Page 82
PCB Technology......Page 85
Laminar Flow Fuel Cells......Page 86
Summary......Page 87
Hydrogen-Fed Micro Fuel Cells......Page 91
μ-RHFC......Page 93
DMFC......Page 94
Membranes......Page 95
Proton Conduction and Membrane Electrode Assembly......Page 96
Results......Page 99
Conclusion......Page 100
References......Page 101
Advances in Microfluidic Fuel Cells......Page 105
Introduction......Page 106
Microfluidic Fuel Cell Fundamentals......Page 110
Channel Fabrication, Electrode Patterning, and Integration......Page 114
Technical Advances in Microfluidic Fuel Cells......Page 118
Improved Performance through Mixed Media Operation......Page 120
Gas-Permeable Cathodes......Page 122
Liquid Oxidants......Page 123
Architectures for Improved Reactant Transport......Page 127
Advances from Computational Fluid Dynamics......Page 132
Microfluidic Fuel Cells with Biocatalysts......Page 134
Scale-Up of Microfluidic Fuel Cells......Page 137
Conclusion and Challenges Ahead......Page 139
References......Page 143
Development of Fabrication/Integration Technology for Micro Tubular SOFCs......Page 146
Introduction......Page 147
Micro Tubular SOFC Concepts......Page 149
Fabrication of Micro Tubular SOFCs......Page 150
Optimization of Anode Microstructure......Page 152
Control of Electrolyte Thickness......Page 155
Densification of the Electrolyte Layer......Page 157
Performance of 1.6 mm Diameter Tubular SOFC......Page 160
High Performance 0.8 mm Diameter Micro Tubular SOFC......Page 162
Models for Single Micro Tubular SOFC......Page 166
Results of Calculation......Page 169
Fabrication of the Cathode Matrix......Page 172
Gas Permeability and Electrical Conductivity of the Cathode Matrix......Page 174
Fabrication and Performance of the Cube-type SOFC Bundle......Page 175
Fabrication and Performance of the Cube-Type SOFC Stack......Page 177
Concluding Remarks......Page 180
References......Page 181
Enzymatic Biofuel Cells......Page 183
Introduction and Background......Page 185
Similarities and Differences to Traditional Fuel Cell Catalysts......Page 190
Metals as Catalysts......Page 191
Metals Used in Hydrogen and Direct Methanol Fuel Cells......Page 192
Alloys......Page 193
Disadvantages of Metal Catalysts......Page 194
Enzymes as Biocatalysts......Page 195
Enzyme Isolation......Page 196
Enzyme Classification......Page 197
Enzyme Function......Page 198
Enzyme Kinetics......Page 199
Mediated Electron Transfer......Page 201
Glucose Oxidase......Page 203
NAD+-Dependent Enzymes......Page 205
MET at Biocathodes......Page 206
Oxygen Reduction......Page 207
DET at Bioanodes......Page 208
DET at Biocathodes......Page 210
FAD-Dependent Enzymes......Page 211
Deep Oxidation of Biofuel Cells......Page 213
Kreb’s Cycle/Citric Acid Cycle......Page 214
Glucose Oxidation......Page 216
Oxidation of Alcohols......Page 218
Glycerol Oxidation......Page 220
Selectivity......Page 221
Mediators......Page 222
High Current Applications......Page 223
Enzyme Immobilization......Page 225
Enzymatic Fuel Cell Design......Page 229
Nanomaterials in Enzymatic Biofuel Cells......Page 235
Conclusions......Page 239
References......Page 240
Glucose Biosensors—Recent Advances in the Field of Diabetes Management......Page 246
Introduction......Page 247
Principles of Glucose Biosensing......Page 248
First Generation Biosensors......Page 250
Second Generation Biosensors......Page 254
Langmuir-Blodgett (LB) Films......Page 256
Polyelectrolyte Multilayers......Page 259
Self-Assembled Monolayers (SAMs)......Page 263
Conjugated Polymers......Page 264
Redox-Active Polymers in Biosensors......Page 270
Metal Nanoparticles......Page 272
Carbon Nanotubes......Page 275
Stabilization of Enzymes......Page 278
Optical Methods for Sensing Glucose......Page 279
Miniaturization......Page 281
Continuous Monitoring......Page 282
Commercial Biosensors......Page 284
Conclusions and Future......Page 286
References......Page 287
B......Page 296
E......Page 297
F......Page 298
L......Page 299
M......Page 300
P......Page 301
S......Page 302
Z......Page 303