Metric Measure Geometry: Gromov's Theory of Convergence and Concentration of Metrics and Measures

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book studies a new theory of metric geometry on metric measure spaces, originally developed by M. Gromov in his book “Metric Structures for Riemannian and Non-Riemannian Spaces” and based on the idea of the concentration of measure phenomenon due to Lévy and Milman. A central theme in this text is the study of the observable distance between metric measure spaces, defined by the difference between 1-Lipschitz functions on one space and those on the other. The topology on the set of metric measure spaces induced by the observable distance function is weaker than the measured Gromov–Hausdorff topology and allows to investigate a sequence of Riemannian manifolds with unbounded dimensions. One of the main parts of this presentation is the discussion of a natural compactification of the completion of the space of metric measure spaces. The stability of the curvature-dimension condition is also discussed. This book makes advanced material accessible to researchers and graduate students interested in metric measure spaces.

Author(s): Takashi Shioya
Series: IRMA Lectures in Mathematics & Theoretical Physics
Publisher: European Mathematical Society
Year: 2016

Language: English
Pages: 196
Tags: Differential Geometry Topology Mathematics Science Math