Metalearning: Applications to Data Mining

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Metalearning is the study of principled methods that exploit metaknowledge to obtain efficient models and solutions by adapting machine learning and data mining processes. While the variety of machine learning and data mining techniques now available can, in principle, provide good model solutions, a methodology is still needed to guide the search for the most appropriate model in an efficient way. Metalearning provides one such methodology that allows systems to become more effective through experience.

This book discusses several approaches to obtaining knowledge concerning the performance of machine learning and data mining algorithms. It shows how this knowledge can be reused to select, combine, compose and adapt both algorithms and models to yield faster, more effective solutions to data mining problems. It can thus help developers improve their algorithms and also develop learning systems that can improve themselves.

The book will be of interest to researchers and graduate students in the areas of machine learning, data mining and artificial intelligence.

Author(s): Pavel Brazdil, Christophe Giraud-Carrier, Carlos Soares, Ricardo Vilalta (auth.)
Series: Cognitive Technologies
Edition: 1
Publisher: Springer-Verlag Berlin Heidelberg
Year: 2009

Language: English
Pages: 176
Tags: Artificial Intelligence (incl. Robotics); Data Mining and Knowledge Discovery; Pattern Recognition

Front Matter....Pages I-XI
Metalearning: Concepts and Systems....Pages 1-10
Metalearning for Algorithm Recommendation: an Introduction....Pages 11-29
Development of Metalearning Systems for Algorithm Recommendation....Pages 31-59
Extending Metalearning to Data Mining and KDD....Pages 61-72
Extending Metalearning to Data Mining and KDD....Pages 73-90
Bias Management in Time-Changing Data Streams....Pages 91-107
Transfer of Metaknowledge Across Tasks....Pages 109-128
Composition of Complex Systems: Role of Domain-Specific Metaknowledge....Pages 129-152
Back Matter....Pages 153-176