Author(s): Alberto Villa, Nikolaos Dimitratos
Series: Catalysis Series
Publisher: Royal Society of Chemistry
Year: 2018
Language: English
Pages: 348
Front Cover......Page 1
Metal-free Functionalized Carbons in Catalysis: Synthesis, Characterization and Applications......Page 2
Preface......Page 8
Contents......Page 10
Section I - Synthesis......Page 17
1.1.1 Role of Curvature and Topological Defects on Surface Reactivity......Page 19
1.1.2 Surface Modification through Heteroatom Insertion......Page 20
1.2.1 Catalytic Chemical Vapor Deposition......Page 22
1.2.2 Post-synthetic Functionalization......Page 23
1.3 Oxidized Carbon Nanomaterials in Catalysis......Page 27
1.3.1 Oxidation Reactions......Page 28
1.3.2 Reduction Reactions......Page 30
1.3.3 C–C and C–N Bond Forming Reactions......Page 31
1.3.4 Cycloaddition and Polymerization Reactions......Page 33
1.4.1 Acid- and Base-catalyzed Reactions with Functionalized Nanocarbons......Page 34
1.5 Conclusion......Page 37
Acknowledgements......Page 38
References......Page 39
2.1 Introduction......Page 45
2.2.1.1 Small Molecules......Page 47
2.2.1.2 Polymers......Page 49
2.2.2 Graphene/Polymer Assemblies by In situ Polymerization......Page 52
2.2.3.1 Soft Templates......Page 54
2.2.4 Other Approaches......Page 56
2.3 Fullerenes......Page 59
2.4.1 Solubilization of CNTs and Physisorption of Small Molecules......Page 61
2.4.2 Functionalization with Polymers......Page 62
2.4.3 Encapsulation of Molecules (Peapods)......Page 63
2.4.4 Functionalization with Other Graphitic Carbons......Page 64
2.4.5 Doping of CNTs......Page 65
2.5 Carbon Nanohorns......Page 67
2.6 Nanodiamonds......Page 68
2.7.1 Functionalization via Physisorption......Page 70
2.7.2 Functionalization with Graphitic Nanostructures......Page 71
2.8 Conclusions......Page 75
References......Page 76
3.1 Introduction......Page 83
3.2.1 Bulk g-C3N4......Page 86
3.2.2.1.1
Mesoporous g-C3N4.Initial reports on mesoporous graphitic carbon nitride (mpg-C3N4) showed that it was synthesized by nanocastin.........Page 88
3.2.2.1.2
g-C3N4 Nanosheets and Thin Films.A novel, size-controllable synthesis of graphitic carbon nitride nanosheets (g-CNNSs) using sme.........Page 90
3.2.2.1.3
One-dimensional g-C3N4 Nanowires/Nanorods/Nanotubes.One-dimensional nanostructured g-C3N4 has its own place in nanoscience and t.........Page 91
3.2.2.3 Supramolecular Preorganization Method......Page 92
3.2.4 Bottom-up and Top-down Strategies......Page 95
3.3.1 Ionothermal Synthesis......Page 97
3.3.2 Low-temperature and Microwave-assisted Synthesis......Page 99
3.3.3 Solid-state Synthetic Method......Page 101
3.4 Miscellaneous......Page 102
3.4.1.1.2
Oxygen Doping.Mei et al. described a polycondensation reaction combined with a solution mixing pathway using melamine and cyanur.........Page 103
3.4.1.1.4
Phosphorus Doping.The introduction of phosphorus into the structural framework of g-C3N4 would lead to customized electronic pro.........Page 104
3.4.1.2 Metal Doping and Heterostructure Formation......Page 105
3.5 Remarks and Future Prospects......Page 106
References......Page 107
Section II - Characterization......Page 119
4.1 Raman Spectroscopy Applied to Carbons......Page 121
4.1.1 Raman Spectroscopy of Perfect and Defective Graphite......Page 122
4.1.2 Raman Spectroscopy of Activated Carbons......Page 123
4.1.3 Raman Spectroscopy of Graphene, Graphene Oxide and Reduced Graphene Oxide......Page 124
4.1.4 Raman Spectroscopy of Carbon Nanotubes (CNTs)......Page 125
4.1.5 Raman Spectroscopy of Other C-containing Materials......Page 126
4.2 IR Spectroscopy Applied to Carbons: Principles, Problems and Solutions......Page 127
4.2.1 FT-IR Spectroscopy of Activated Carbons......Page 130
4.2.2 FT-IR Spectroscopy of GO, RGO, and Doped GO......Page 133
4.2.3 FT-IR Spectroscopy of CNTs......Page 135
4.2.4 FT-IR Spectroscopy of Fullerenes......Page 136
4.2.5 FT-IR Spectroscopy of Other Carbon-based Materials......Page 137
4.3 Neutron Properties, and Inelastic Neutron Scattering Applied to Carbons......Page 141
4.3.1 INS Spectra of Activated Carbons......Page 142
4.3.2 INS Spectroscopy of Other Carbonaceous Materials......Page 145
References......Page 147
5.1 Introduction......Page 154
5.1.1 Physical Principles and Practical Aspects of XPS......Page 155
5.1.2 XPS Instrumentation......Page 158
5.1.3 XPS Peak Characteristics, Chemical Shift and Quantification......Page 159
5.2 Analysis of the C 1s Spectra of Carbonaceous Materials......Page 162
5.2.1 Peak Fitting or Peak Deconvolution Procedure......Page 164
5.3 XPS Studies of Pristine Carbon Materials......Page 166
5.4 XPS Characterization of Defects on Carbon Materials......Page 170
5.5 XPS Characterization of Carbon Materials with Oxygen Functional Groups......Page 172
5.6 XPS Characterization of Carbon Materials with Heteroatom Dopants......Page 174
5.6.1 XPS Characterization of Carbon Materials Doped with Nitrogen......Page 175
5.6.2 XPS Characterization of Carbon Materials with Other Heteroatoms......Page 178
References......Page 182
Section III - Applications......Page 193
6.1 Introduction......Page 195
6.2 Hydrocarbon Oxidation......Page 196
6.2.1 Cyclohexane Oxidation......Page 197
6.2.2 Ethylbenzene Oxidation......Page 198
6.2.3 Selective Oxidation of Toluene......Page 199
6.3 Alcohol Oxidation......Page 200
6.4.1 Knoevenagel Condensation Reaction......Page 202
6.4.2 Transesterification......Page 203
6.4.3 Hydrolysis Reactions......Page 204
6.5 Coupling Reactions......Page 205
6.6 Reduction Reactions......Page 206
6.7 Discussion......Page 207
References......Page 209
7.1 Introduction......Page 212
7.2 Oxidative Dehydrogenation of Ethylbenzene......Page 214
7.3 Catalytic Oxidation of Alkenes and Alkanes......Page 228
7.4 Direct Dehydrogenation......Page 235
Acknowledgements......Page 238
References......Page 239
8.1 Introduction......Page 244
8.2 Oxygen Electrochemistry Reactions......Page 246
8.3 Metal-free Functionalized Carbons for ORR Catalysis......Page 247
8.3.1.1 Nitrogen-doped Nanocarbon......Page 248
8.3.1.2 Activity Descriptor......Page 250
8.3.2 Edge Effects or Edge Sites......Page 252
8.3.3 Intrinsic Topological Defects......Page 255
8.3.3.1 Theoretical Investigation of the Role of Defects......Page 256
8.3.3.2 Defective Nanocarbons as Superior ORR Catalysts......Page 257
8.3.3.3 Correlation Among Dopants, Edges, and Defects......Page 260
8.4.1 N-doped Carbons for OER Catalysis......Page 263
8.4.2 Oxidized Carbons for OER Catalysis......Page 265
8.4.3 Dual-doped Carbons for OER Catalysis......Page 266
8.5.1.1 N-doped Carbons......Page 269
8.5.1.2 Dual-doped Carbons......Page 271
8.5.2 HER-containing Multifunctional Catalysts......Page 273
8.6 Conclusions......Page 275
References......Page 276
9.1.1 Overview......Page 282
9.1.2 Key Terminologies......Page 285
9.2.1 Linear Structured Polymers......Page 286
9.2.2 Polymeric Networks......Page 289
9.2.3 Covalent Organic Frameworks......Page 293
9.3 Graphitic Carbon Nitrides (g-C3N4)......Page 295
9.3.1 Geometric and Electronic Structures......Page 296
9.3.2 Pristine Bulk g-C3N4......Page 298
9.3.3.1 Porous Structure......Page 302
9.3.3.2 Shape Engineering of g-C3N4......Page 304
9.3.3.3 Doping and Surface Engineering......Page 307
9.3.3.4 Carbon Nitride Derivatives......Page 312
9.3.4 Other Applications Beyond Photocatalytic HER......Page 314
References......Page 316
10.1 Introduction......Page 320
10.2 Modified Electrode Fabrication......Page 322
10.3.1 Carbon Paste and Ordered Carbons......Page 326
10.3.2 Glassy Carbon (GC), Boron-doped Diamond (BDD) and Tetrahedral Amorphous Carbon (ta-C)......Page 327
10.3.3.1 Metal-free Functionalized Carbon Nanotubes......Page 329
10.3.3.2 Oxygen-doped CNTs......Page 330
10.3.3.4 Boron-doped CNTs......Page 331
10.3.4.2 Metal-free Graphene-based Materials......Page 332
10.3.4.4 Nitrogen-doped Graphene......Page 333
10.3.4.6 Phosphorus-doped Graphene......Page 335
References......Page 336
Subject Index......Page 342