Metal and Ceramic Matrix Composites

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

With contributions from leading experts in their respective fields, Metal and Ceramic Matrix Composites provides a comprehensive overview of topics on specific materials and trends. It is a subject regularly included as a final year option in materials science courses and is also of much industrial and academic interest. The book begins with a selection of chapters describing the most common commercial applications of composite materials, including those in the aerospace, automotive, and power generation industries. Section 2 outlines manufacturing and processing methods used in the production of composite materials ranging from basic aluminium matrix composites, through particle reinforced composites, to composites using novel matrix fibres such as titanium-silicon carbide and ceramics. Section 3 is devoted to the mechanical behaviour of different matrix materials and structure-property relations, with particular attention paid to failure and fracture mechanisms. The final section considers those new fibres and composite materials currently in development, including high strength copper composites, porous particle composites, active composites, and ceramic nanocomposites.

Author(s): Brian Cantor, Fionn .P.E Dunne, Ian C Stone
Series: Series in Material Science and Engineering
Edition: 1
Publisher: Taylor & Francis, IOP
Year: 2003

Language: English
Pages: 422

Metal and Ceramic Matrix Composites......Page 1
Contents......Page 3
Preface......Page 7
Acknowledgments......Page 9
SECTION 1: INDUSTRIAL PERSPECTIVE......Page 11
Aluminium metal matrix composites—potential bene.ts......Page 12
Processing of aluminium metal matrix composites......Page 13
Properties of aluminium metal matrix composites......Page 15
Potential applications for aluminium metal matrix composites......Page 16
Blades and vanes......Page 17
Titanium metal matrix composites—potential benefits......Page 18
Metal spray processing......Page 19
Properties of titanium metal matrix composites......Page 20
Potential applications of titanium metal matrix composites......Page 22
Compressor blings......Page 23
Casings......Page 24
Struts and links......Page 25
Conclusions......Page 26
Introduction......Page 27
Piston functions......Page 29
Piston material high-temperature strength......Page 31
Powder metallurgical aluminium alloy pistons......Page 33
Powder metallurgy aluminium alloy piston characteristics......Page 37
Engine cylinder functions......Page 38
Composite cast cylinders......Page 39
Hard chromium plating......Page 40
Composite Ni plating......Page 42
Uncoated high-Si aluminium cylinders......Page 44
Powder metallurgy aluminium alloy cylinder liners......Page 45
Cast-in composites......Page 46
References and notes......Page 47
Industrial background......Page 50
Thermodynamic features......Page 51
Practical powder metallurgical processing......Page 52
Mechanical testing......Page 54
Microstructure......Page 55
Tensile properties......Page 56
Fatigue properties......Page 57
Ring pressing......Page 58
Summary......Page 59
References......Page 60
Aluminium matrix composites......Page 61
Two-step hot pressing (warm platen method)......Page 62
Sheet insert method......Page 63
Titanium matrix composites......Page 65
Interface layer......Page 66
Interface layer......Page 70
Other TiAl composites......Page 71
References......Page 74
Background......Page 75
Industrial gas turbine requirements......Page 76
Combustion chambers and transition ducting......Page 77
Nozzle guide vanes and turbine blades......Page 78
Monotonic tensile properties......Page 79
Fatigue properties......Page 80
Interface development......Page 82
References......Page 83
Stable composite superconductor......Page 85
Multifilamentary composite superconductor......Page 87
Ultra-fine filamentary composite superconductors......Page 88
Stranded and reinforced composite superconductor......Page 89
Simple composite method......Page 90
Metallurgical bond process......Page 91
Thermo-mechanical process......Page 92
Three-component composite process......Page 94
Jelly-roll processes......Page 95
Oxide powder in tube (OPIT) or silver-sheathed process......Page 96
Bronze process......Page 98
Coated process......Page 100
Nb-Ti composite superconductors......Page 102
A-15 composite superconductors......Page 103
Bi–oxide composite superconductors......Page 104
Y oxide composite superconductors......Page 105
Metallic composite superconductors......Page 106
Metallic composite superconductors......Page 107
Conclusions......Page 108
References......Page 109
SECTION 2: MANUFACTURING AND PROCESSING......Page 111
Classification of processing methods......Page 112
Process energy......Page 115
Pressure infiltration......Page 117
Remelting of metal matrix composite products......Page 118
Reinforcement separation technology......Page 119
Chemical separation......Page 120
References......Page 123
Introduction......Page 124
Reactive squeeze casting......Page 126
Effect of pre-form and molten aluminium temperature......Page 128
Effect of volume fraction......Page 129
Hardening behaviour......Page 131
Hardening mechanism......Page 132
Semi-solid squeeze casting......Page 134
Processing......Page 135
References......Page 137
Introduction......Page 139
Changes in mechanical properties......Page 140
Upsetting and forging......Page 142
Cold rolling and annealing......Page 145
Sheet forming......Page 147
References......Page 150
Introduction......Page 152
Foil–fibre–foil......Page 154
Matrix-coated monotape......Page 156
Matrix-coated fibres......Page 157
Slurry powder metallurgy......Page 158
Slurry-coated fibres......Page 159
Complex shapes......Page 160
Binder selection......Page 161
Binder burn-out......Page 162
Consolidation methods......Page 164
Consolidation parameters......Page 166
Composite interfaces during consolidation......Page 168
Interface bonding......Page 169
Interface compatibility......Page 170
Interface stability—thermochemical compatibility......Page 171
Interface residual stresses—thermomechanical compatibility......Page 173
Silicon carbide fibre/titanium interfaces......Page 175
Protective coatings......Page 176
Temporary hydrogenation on Ti/SiC interfaces......Page 177
Current status of SiC fibre/Ti-based metal matrix composites......Page 179
References......Page 182
Continuous fibre composites—applications......Page 185
Manufacturing methods......Page 186
Mechanical properties of physical vapour deposited materials......Page 190
The need for modelling......Page 191
Empirical models......Page 192
Micromechanical finite element models......Page 195
Constitutive equations for consolidation......Page 202
Conclusions......Page 205
References......Page 206
SECTION 3: MECHANICAL BEHAVIOUR......Page 208
Introduction......Page 209
Mean-field methods......Page 211
Periodic microfield models......Page 215
Mean-field models including damage......Page 216
Periodic microfield models with damage......Page 220
Future developments......Page 223
References......Page 226
Propagation of long fatigue cracks......Page 228
Propagation of small fatigue cracks......Page 230
Low cycle fatigue and cyclic deformation......Page 234
Thermo-mechanical fatigue......Page 239
Cyclic creep......Page 243
References......Page 246
Mechanical properties of intermetallics......Page 247
Intermetallics composite material design......Page 250
Static and dynamic degradation......Page 253
Degradation in Ni3Al......Page 254
Loading rate dependence......Page 255
Material designs for lifetime extension......Page 257
References......Page 260
Introduction......Page 262
Degradation mechanism......Page 263
Fibre strength as a function of defect size......Page 267
Strength distribution of fibres and its influence on composite strength......Page 269
Monte Carlo method combined with modified shear lag analysis......Page 273
Interfacial debonding......Page 276
Stress–strain curve, damage accumulation, strength and fracture......Page 278
Conclusions......Page 283
References......Page 285
Introduction......Page 287
Particulate-reinforced ceramics......Page 288
Fibre-reinforced ceramics......Page 293
Laminar ceramics......Page 299
Concluding remarks......Page 301
References......Page 302
Stress–strain behaviour......Page 305
High-temperature behaviour......Page 309
Interface types......Page 312
Interface stability......Page 314
Micromechanical characterization......Page 316
High temperature performance limits......Page 318
References......Page 327
SECTION 4: NEW FIBRES AND COMPOSITES......Page 329
Introduction......Page 330
SiC from an oxygen-cured precursor route......Page 331
Electron-cured precursor filaments......Page 333
Near-stoichiometric fibres......Page 334
Alumina silica fibres......Page 335
-Alumina fibres......Page 337
-Alumina fibres containing a second phase......Page 339
Conclusions......Page 340
Reference......Page 341
Introduction......Page 342
Manufacturing methods......Page 344
Cu-15 wt% Cr composite......Page 345
Ageing characteristics......Page 348
Carbon......Page 349
Zirconium, titanium and other elements......Page 350
Strengthening mechanism......Page 351
References......Page 353
Introduction......Page 355
Hollow particles......Page 357
Hollow particle reinforced composites......Page 358
Effects of introducing pores on stress distribution......Page 360
Mechanical properties......Page 362
Other properties......Page 367
References......Page 370
Introduction......Page 372
Active composite materials......Page 373
Optical fibres in an aluminium matrix......Page 378
Fibre-optic strain sensor......Page 380
Sensor for measuring temperature and strain......Page 381
High-temperature active composite......Page 384
Conclusions......Page 385
References......Page 386
Introduction......Page 388
Background......Page 389
Microstructure......Page 390
Mechanical properties......Page 396
Background......Page 398
Microstructure......Page 399
Mechanical properties......Page 400
Practical applications......Page 404
Mechanical properties and degradation......Page 406
Biological safety and biocompatibility......Page 407
Bioactivity......Page 408
Prosthetic joints......Page 409
References......Page 410
Introduction......Page 412
Microstructure......Page 413
Flexural strength......Page 414
Creep......Page 415
Oxidation resistance and thermal stability......Page 417
Al2O3/YAG/ZrO2 ternary melt growth composite......Page 418
Conclusions......Page 420
References......Page 421