Mechanobiology: From Molecular Sensing to Disease

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Mechanobiology: From Molecular Sensing to Disease will provide a review of the current state of understanding of mechanobiology and its role in health and disease. It covers: Current understanding of the main molecular pathways by which cells sense and respond to mechanical stimuli, A review of diseases that with known or purported mechanobiological underpinnings; The role of mechanobiology in tissue engineering and regenerative medicine; Experimental methods to capture mechanobiological phenomena; Computational models in mechanobiology.

Author(s): Glen L. Niebur
Series: Eğitim Tanrısı
Edition: 1
Publisher: Elsevier
Year: 2020

Language: English
Pages: 241

Cover......Page 1
Mechanobiology: From
Molecular Sensing to Disease......Page 2
Copyright......Page 3
Dedication......Page 4
List of Contributors......Page 5
History of Mechanobiology......Page 8
Why not Mechanobiology?......Page 9
References......Page 10
2. Mechanical Loading Effects on Bone: Mechanotransduction......Page 13
3. Evidence for Osteocyte-Directed Skeletal Responses......Page 17
4.2 Changes in Osteocyte Microenvironment......Page 19
4.3 Cell-Autonomous Alteration of Osteocyte Function......Page 21
5.1 Cancer......Page 22
5.2 Vascular Health......Page 24
6. Conclusions and Future Directions......Page 25
References......Page 26
3.1 Turing Patterns......Page 34
2.2 Fluid Shear Stress......Page 35
5.1 Continuum Models of Tissue Mechanics......Page 188
3.2 Cone-and-Plate Bioreactors......Page 37
4.1.2 Mitral valve......Page 39
4. Genetically Modified Organisms......Page 227
4.2.2 Mitral valve......Page 40
4.4 Valvular Response to Hemodynamic Stresses......Page 41
4.4.1 Fluid shear stress mechanotransduction......Page 42
4.4.2 Tensile stress mechanotransduction......Page 43
5.2 Vascular Hemodynamics......Page 44
5.3.2 Aneurysm......Page 45
5.4.1 Fluid shear stress mechanotransduction......Page 46
5.4.2 Tensile stress mechanotransduction......Page 47
References......Page 48
3.2. Intracellular Force Measurements in Live Cells With Förster Resonance Energy Transfer–Based Molecular Tension Sensors......Page 57
3.1 Intraocular Pressure and Lamina Cribrosa Remodeling......Page 58
3.3 Deformation and Displacement of the Optic Nerve Head in Response to Acute Intraocular Pressure Elevation......Page 59
3.1 Urinary System......Page 113
4.1 Transforming Growth Factor β Signaling Pathway......Page 60
4.2 Proteases......Page 62
4.3 Hypoxia and Oxidative Stress......Page 65
4.5 Summary......Page 68
References......Page 178
References......Page 69
4.2. Computational Morphogenesis of Embryonic Bone Development: Past, Present, and Future......Page 180
1. Introduction......Page 75
2.2 Bone Marrow Mechanics and Relevance to Metastatic Bone Cancer......Page 76
4.1 Continuum Models of Biochemical Signaling in Growing Tissue Domains......Page 186
2.2.1 Interstitial fluid flow......Page 77
2.2.2 Tissue strain......Page 79
2.2.3 Extracellular matrix stiffness......Page 80
11.2 MicroRNAs and Their Role in Mechanotransduction in Tissue......Page 81
3.2.1.3 Cadherins......Page 82
3.4 Nucleus......Page 83
4. Mechanics of Primary Cilium Biology......Page 118
References......Page 84
2. Cell Membrane......Page 89
2.1 Ion Channels......Page 90
2.2 Primary Cilia......Page 91
2.3 Focal Adhesions......Page 92
3. Cytoskeleton......Page 93
4. Modeling Dynamics of Biochemical Signals in Tissues......Page 184
5.2 Discrete Models of Tissue Mechanics......Page 95
3.1.1 Kidney......Page 97
4.2.3 Lamin B......Page 99
3.2 Engineering Tendon and Ligament......Page 153
References......Page 100
Glossary......Page 233
2.1 Structure......Page 109
2.3 Ciliopathies......Page 111
3. Primary Ciliary Mechanobiology and Mechanotransduction......Page 112
3.2.1 Endothelium......Page 114
3.3.1 Cartilage......Page 115
3.3.2 Bone......Page 117
5. Discussion and Future Directions......Page 119
5. In Vivo Loading......Page 130
2.3. In Vivo Models of Muscle Stimulation and Mechanical Loading in Bone Mechanobiology......Page 126
1. Introduction......Page 203
2. Reaction-Diffusion Systems......Page 127
3. Mechanical Properties and Characterization of Biological Tissues......Page 128
4.1 Skeletal Muscle Mechanobiology Review......Page 158
7. Frequency-Dependent Marrow Pressure and Bone Strain Generated by Muscle Stimulation......Page 132
8. Future Work and Conclusion......Page 220
9.1 Basic Multicellular Units......Page 135
10. Mechanical Signal-Induced Marrow Stem Cell Elevation and Adipose Cell Suppression......Page 136
11. Osteocytes and Their Response to Mechanical Signals Coupled With Wnt Signaling......Page 137
11.1 The Role of LRP5 in Bone Response to Mechanical Loading......Page 138
13. Discussion......Page 139
References......Page 140
1. Introduction......Page 146
2.1 Cartilage Mechanobiology Review......Page 147
2.2 Engineering Cartilage......Page 148
2.2.1 Scaffold-based......Page 149
2.2.2 Scaffold-free......Page 150
2.3 Future Work......Page 151
3.1 Tendon and Ligament Mechanobiology Review......Page 152
3.2.1 Scaffold-based......Page 154
3.2.2 Scaffold-free......Page 156
3.3 Future Work......Page 157
4.2 Engineering Skeletal Muscle......Page 159
4.2.1 Scaffold-based methods......Page 160
4.2.3 Measuring force production......Page 162
4.3 Future Work......Page 163
5. Conclusion......Page 164
References......Page 165
2.1 A Genetically Encoded Tension Sensor Unit......Page 169
2.3 Förster Resonance Energy Transfer Measurements......Page 171
3.1 Protein of Interest and Related Tension Sensors......Page 172
3.2 Mechanics of Focal Adhesion: Force Sensing and Cell Migration......Page 173
3.3 Force Propagation in the Cytoskeleton......Page 174
3.4 Force Transmission in Cell-Cell Junctions......Page 175
4. Perspectives......Page 177
3. Mechanical Signaling Regulating Tissue Growth......Page 181
4.2 Discrete Stochastic Models of Biochemical Signaling in Tissues......Page 187
5.2.2 Vertex-based models......Page 190
5.2.3 Subcellular element models......Page 191
6. Simulating Cranial Vault Growth With Imbedded Mechanical Strain......Page 192
7. Case Study: Hybrid BioMechanochemical Models of the Drosophila Wing Disc......Page 194
8. Summary and Discussion of Future Directions......Page 195
10. Data Mining, Artificial Intelligence, and Bioinformatics......Page 229
3.2.1 Activator-substrate models......Page 204
3.2.2 Activator-inhibitor models......Page 205
4. Spatiotemporal Factors Affecting Patterning......Page 206
4.1 Mesh Dependency and Initial Molar Concentration Sensitivity......Page 207
4.2 Domain Geometry......Page 210
5. A Model for Cranial Vault Growth......Page 211
7. Advancements in Postnatal Cranial Vault Modeling......Page 217
Appendix A......Page 221
Appendix B......Page 222
References......Page 223
2. Cell and Cytoskeletal Mechanics......Page 226
8. Imaging and Image Analysis......Page 228
References......Page 230
C......Page 235
F......Page 236
N......Page 237
P......Page 238
T......Page 239
Z......Page 240
Back Cover......Page 241