What mechanisms are involved in enabling us to generate predictions of what will happen in the near future? Although we use associative mechanisms as the basis to predict future events, such as using cues from our surrounding environment, timing, attentional, and configural mechanisms are also needed to improve this function. Timing mechanisms allow us to determine when those events will take place. Attentional mechanisms ensure that we keep track of cues that are present when unexpected events occur and disregard cues present when everything happens according to our expectations. Configural mechanisms make it possible to combine separate cues into one signal that predicts an event different from that predicted individually by separate cues. Written for graduates and researchers in neuroscience, computer science, biomedical engineering and psychology, the author presents neural network models that incorporate these mechanisms and shows, through computer simulations, how they explain the multiple properties of associative learning.
Author(s): Nestor Schmajuk
Edition: 1
Publisher: Cambridge University Press
Year: 2010
Language: English
Pages: 505
Half-title......Page 3
Title......Page 5
Copyright......Page 6
Dedication......Page 7
Contents......Page 9
Preface......Page 11
Acknowledgments......Page 13
Abbreviations......Page 17
Part I INTRODUCTION......Page 21
B. Inhibitory conditioning......Page 23
D. Compound conditioning......Page 24
G. Nonlinear combinations of multiple stimuli......Page 25
J. Combination of multiple conditioning events......Page 26
Variations in the effectiveness of the US during learning......Page 27
CS–CS associations and inference generation during performance......Page 28
Computational models of classical conditioning......Page 29
The Rescorla–Wagner (1972) model......Page 30
The Van Hamme and Wasserman (1994) version of the Rescorla and Wagner (1972) model......Page 31
Grossberg's (1975) attentional network......Page 32
Pearce and Hall's (1980) theory......Page 33
The Dickinson and Burke (1996) version of Wagner's (1981) SOP model......Page 34
The Miller and Schachtman (1985) comparator hypothesis......Page 35
Le Pelley's (2004) hybrid model......Page 36
Harris's (2006) model......Page 37
Summary......Page 38
Part II ATTENTIONAL AND ASSOCIATIVE MECHANISMS......Page 39
2 An attentional–associative model of conditioning......Page 41
Short-term memory and feedback......Page 42
Attention......Page 44
Conscious and unconscious conditioning......Page 45
Novelty......Page 46
Changes in CS–US associations......Page 47
Limiting term for VCS,US associations......Page 49
Changes in CS–CS associations......Page 50
Learning (storage) and performance (retrieval)......Page 51
CR strength......Page 52
Appendix 2.1 Parameter values......Page 53
3 Simple and compound conditioning......Page 54
Extinction of inhibitory conditioning......Page 55
Associative changes during compound conditioning......Page 56
Attention and error-correcting rules......Page 58
Computer simulations......Page 60
Computer simulations......Page 63
Conditioned inhibition......Page 64
Intermediate reinforcement of the compound......Page 66
Partial reinforcement of the compound......Page 67
Series of reinforced and nonreinforced presentations of the excitatory–inhibitory compound......Page 69
Discussion......Page 70
Existing support......Page 72
Alternative approaches......Page 73
Two unique predictions of the model......Page 74
Summary......Page 76
Experimental data......Page 77
Simulation......Page 79
Discussion......Page 81
Brain circuitry......Page 82
Summary......Page 83
Simulation procedures......Page 84
The effect of different preexposure procedures on the retardation of conditioning......Page 85
The effects of different parameters of preexposure on the strength of LI......Page 88
The consequences of presenting a novel event, or the omission of an expected event......Page 93
The effect of preexposure to a pair of CSs......Page 97
Orienting response (OR) and LI......Page 99
Motivational effects on LI......Page 100
The effects of the passage of time......Page 102
Variations in the associability of the CS......Page 106
Modulation of retrieval of the CS–US associations......Page 108
Interference with the formation of CS–US associations......Page 109
Summary......Page 110
Control of the formation of CX–CS and CS–CX associations in the cortex: hippocampus proper (HP)......Page 113
Computation of the predictions of CSs and US: entorhinal cortex (EC) and subiculum (SUB)......Page 115
Computation of X CS: ventral pallidum (VP ), thalamus (THAL), amygdala (Amyg), and prefrontal cortex (PFC)......Page 116
Dopaminergic involvement in latent inhibition......Page 118
Experimental data......Page 119
Discussion......Page 121
Hippocampal involvement in latent inhibition......Page 122
Impairment of LI......Page 123
Facilitation of LI......Page 125
Simulated results......Page 128
Nucleus accumbens involvement in latent inhibition......Page 129
Simulated results......Page 130
Discussion......Page 131
Hippocampal dysfunction and schizophrenia......Page 132
Human experimental data......Page 133
Simulated results......Page 135
Summary......Page 136
7 Creativity......Page 139
Application of the model to creativity......Page 140
Formation of associations......Page 141
Combining associations......Page 142
Simulated results......Page 143
Experimental data......Page 145
Simulated results......Page 146
Experimental data......Page 147
Simulated results......Page 148
Improved performance in divergent thinking and remote associate tests......Page 149
Problem solving and response selection......Page 150
Comparison with formal models of creativity......Page 151
The neurobiology of creativity......Page 152
Hippocampus, creativity and schizophrenia......Page 154
Summary......Page 156
Recovery from overshadowing......Page 157
Simulated results......Page 158
Comparison with other models......Page 159
Simulated results......Page 161
Responding in the conditioning (CON) group is stronger than in the preconditioning and conditioning (PRE + CON) group......Page 162
Responding in the preexposure and overshadowing (PRE + OVER) group is stronger than in the overshadowing (OVER) group......Page 164
Attenuation of blocking......Page 165
Experimental data 1......Page 166
Simulated results 1......Page 167
Experimental data 2......Page 169
Simulated results 2......Page 170
Experimental data 3......Page 171
Comparison with other models......Page 174
Backward blocking and recovery from backward blocking......Page 175
Simulated results......Page 176
Recovery from backward blocking......Page 178
A proposed modification of the SLG model......Page 179
Comparison with other models......Page 180
Discussion......Page 181
Summary......Page 182
Orienting response and behavioral inhibition......Page 183
9 Extinction......Page 185
Specific and generalized characteristics of contexts......Page 186
Simulation values......Page 187
Extinction......Page 188
Contextual associations during extinction......Page 189
Summation tests following extinction......Page 191
Other experiments......Page 192
Comparison with other theories......Page 193
Simulations......Page 194
Comparison with other theories......Page 196
Spontaneous recovery and external disinhibition......Page 197
Simulations......Page 198
Effects of varying the acquisition–extinction interval......Page 200
External disinhibition......Page 201
Effects of presentations of another CS during delayed testing......Page 202
Simulations......Page 203
Weak conditioning and spontaneous recovery......Page 204
Simulations......Page 205
Effects of extinction cues on spontaneous recovery......Page 206
Discussion......Page 208
Comparison with other models......Page 210
Effects of different procedures and the presence of odor cues......Page 211
Simulations......Page 212
Elimination of renewal by pretreatment of the testing context......Page 214
Simulations......Page 215
Simulations......Page 217
Effects of an extinction cue on renewal......Page 218
Simulations......Page 219
Comparison with other models......Page 220
Effects of reinforced exposures in the context of extinction and testing......Page 221
Simulations......Page 223
Effects of reinforced exposures in the context of extinction or testing......Page 225
Simulations......Page 226
Elimination of reinstatement......Page 227
Simulations......Page 228
Inflation and reinstatement......Page 229
Simulations......Page 230
Partial reinforcement and reinstatement......Page 232
Several forms of reinstatement......Page 234
Reacquisition following extinction......Page 235
Slow or fast reacquisition depends on the number of extinction trials......Page 236
Simulations......Page 237
Discussion......Page 238
General discussion......Page 239
History of reinforcement......Page 244
Predictions......Page 245
Some limitations of the model......Page 249
Purely attentional solutions......Page 250
Competing theories of spontaneous recovery, renewal, reinstatement and reacquisition......Page 251
Summary......Page 253
Effects of neurotoxic hippocampal lesions......Page 254
Experimental data......Page 255
Simulation results......Page 256
Comparison with alternative assumptions......Page 258
Simulation results......Page 259
Other extinction paradigms......Page 261
Summary......Page 262
Part III CONFIGURAL MECHANISMS......Page 263
11 A configural model of conditioning......Page 265
A configural model of classical conditioning......Page 266
The SD model for a single response system......Page 267
Short-term memory (STM ) traces......Page 268
Input–hidden unit associations......Page 269
Input–output associations......Page 270
Differences between input–output and input–hidden associations......Page 271
Simple CSs vs. occasion setters......Page 272
Paradigms described by the SD model......Page 273
The SD model for multiple response systems......Page 274
Summary......Page 276
Distinctions between occasion setting and simple conditioning......Page 277
Response form......Page 278
Transfer......Page 279
Simulation results......Page 280
Experimental results......Page 283
Simulated results......Page 284
Simulation results......Page 288
Experimental results......Page 291
Simulation results......Page 292
Experimental results......Page 295
Simulation results......Page 296
Experimental data......Page 298
Simulation results......Page 299
Summary......Page 301
FP discrimination and extinction......Page 302
FP discrimination and extinction......Page 304
Summary......Page 306
FN discrimination......Page 307
FP discrimination......Page 309
FN discrimination......Page 317
Experimental results......Page 319
Simulation results......Page 320
Pretraining of X and A......Page 321
Discussion......Page 322
Alternative theories of occasion setting......Page 326
Combined configural/elementary accounts......Page 327
Comparison of the SD/SLH model with modulatory approaches to occasion setting......Page 329
Comparison of the SD/SLH model with other configural theories of occasion setting......Page 331
Appendix 12.1 Simulation parameters......Page 334
13 The neurobiology of occasion setting......Page 336
Correspondence between the neural network architecture and the organization of the brain......Page 337
Effects of hippocampal lesions......Page 340
Simultaneous FP discriminations with a salient target......Page 341
Simulation results......Page 342
Simulation results......Page 346
Transfer of occasion setting......Page 349
Simulated results......Page 351
Contextual discriminations......Page 353
Simulation results......Page 355
Discussion......Page 359
Discrimination difficulty and the effect of hippocampal and cortical lesions......Page 360
Effects of HFLs......Page 364
Effects of HPL......Page 365
Effects of CLs......Page 366
Other effects of hippocampal and cortical lesions......Page 367
Related theories of hippocampal function......Page 369
Summary......Page 373
Appendix 13.2 Computation of similarity......Page 374
Part IV ATTENTIONAL, ASSOCIATIVE, CONFIGURAL AND TIMING MECHANISMS......Page 377
The content of learning in Pavlovian conditioning......Page 379
A timing version of the SD/SHL model......Page 383
CR topography in simple conditioning......Page 385
Temporal competition in simple conditioning......Page 386
Competition to predict the moment of US presentation......Page 389
Competition to predict the intensity of the US......Page 392
Competition to predict the time and duration of the US......Page 393
Temporal specificity of the action of an occasion setter......Page 395
Temporal specificity of an occasion setter......Page 396
The feature controls both temporal and associative mechanisms......Page 398
Temporal specificity of serial FP discrimination after feature extinction......Page 401
Summary of serial FP discrimination simulations......Page 403
Discussion......Page 404
Application of the model to serial order......Page 407
Summary......Page 408
Appendix 14.1 The configural–timing model......Page 409
Appendix 14.2 Simulation parameters......Page 410
Attentional and configural mechanisms in extinction......Page 412
Configuration and attention......Page 413
Experimental results......Page 414
Simulations......Page 415
Retardation and summation tests of an extinction cue......Page 417
Simulations......Page 419
Simulations......Page 420
Summary......Page 421
Causal learning......Page 423
The attentional–configural form of the SLG model......Page 424
Experimental data......Page 425
Simulated results......Page 426
Additivity training preceding backward blocking......Page 428
Inferential reasoning......Page 429
Sensory preconditioning......Page 430
Transitivity......Page 431
Summary......Page 433
Part V CONCLUSION: MECHANISMS OF CLASSICAL CONDITIONING......Page 435
17 Conclusion: mechanisms of classical conditioning......Page 437
Mechanisms needed to describe classical conditioning......Page 438
Emergent properties......Page 439
Evaluation of the models:imitating and explaining the experimental data......Page 440
The neurophysiology of behavior......Page 441
Future challenges......Page 442
Summary......Page 443
References......Page 445
Author Index......Page 480
Subject Index......Page 488