MECHANISMS AND MACHINES: KINEMATICS, DYNAMICS, AND SYNTHESIS has been designed to serve as a core textbook for the mechanisms and machines course, targeting junior level mechanical engineering students. The book is written with the aim of providing a complete, yet concise, text that can be covered in a single-semester course. The primary goal of the text is to introduce students to the synthesis and analysis of planar mechanisms and machines, using a method well suited to computer programming, known as the Vector Loop Method. Author Michael Stanisic's approach of teaching synthesis first, and then going into analysis, will enable students to actually grasp the mathematics behind mechanism design. The book uses the vector loop method and kinematic coefficients throughout the text, and exhibits a seamless continuity in presentation that is a rare find in engineering texts. The multitude of examples in the book cover a large variety of problems and delineate an excellent problem solving methodology.
Author(s): Michael M Stanisic
Publisher: Cengage Learning
Year: 2015
Language: English
Pages: 428
Tags: Mechanisms, Machines, Kinematics, Dynamics, Stanisic
Cover......Page 1
Half Title......Page 2
Title......Page 4
Statement......Page 5
Copyright......Page 6
Dedication......Page 7
Contents......Page 8
Preface......Page 13
Acknowledgments......Page 19
Introduction......Page 21
1.1: Joints......Page 22
1.2: Skeleton Diagrams......Page 29
1.3: Mechanisms and Machines......Page 46
1.4: Gruebler’s Criterion and Degrees of Freedom......Page 48
1.5: Mobility......Page 53
1.6: Grashof’s Criterion......Page 56
1.7: Problems......Page 65
2.1: Kinematic Analysis and the Vector Loop Method......Page 75
2.2: Hints for Choosing Vectors......Page 81
2.3: Closed-Form Solutions to the Position Equations......Page 98
2.4: Numerical Solutions to Position Equations via Newton’s Method......Page 100
2.5: The Motion of Points of Interest......Page 105
2.6: Problems......Page 107
2.7: Programming Problems......Page 116
2.8: Appendix I: Derivation of the Tangent of the Half Angle Formulas......Page 119
2.9: Appendix II: Matlab® Code Used in Example 2.10 Demonstrating Newton’s Method......Page 120
Introduction......Page 123
3.1: Externally Contacting Rolling Bodies......Page 124
3.2: Internally Contacting Rolling Bodies......Page 125
3.3: One Body with a Flat Surface......Page 126
3.4: Assembly Configuration......Page 128
3.5: Geartrains......Page 134
3.6: Problems......Page 159
3.7: Appendix I: The Involute Tooth Profile......Page 174
4.1: Time-Based Velocity and Acceleration Analysis of the Four Bar Mechanism......Page 189
4.2: Kinematic Coefficients......Page 190
4.3: Finding Dead Positions Using Kinematic Coefficients......Page 196
4.4: Finding Limit Positions Using Kinematic Coefficients......Page 198
4.5: Kinematic Coefficients of Points of Interest......Page 202
4.6: Kinematic Coefficients of Geartrains......Page 204
4.7: Problems......Page 206
4.8: Programming Problem......Page 211
5.1: Review of Planar Kinetics......Page 212
5.2: Three-Dimensional Aspects in the Force Analysis of Planar Machines......Page 229
5.3: Static Force Analysis and Inertia Force Analysis......Page 247
5.4: Force Analysis of Rolling Contacts......Page 248
5.5: Problems......Page 254
5.6: Appendix I: Kinematic Analysis for Examples in Section 5.1 (Example 5.2) and Section 7.2......Page 276
5.7: Appendix II: Computing the Accelerations of the Mass Centers of the Composite Shapes in Section 5.2.6......Page 278
6.1: Friction in a Pin Joint......Page 279
6.2: Friction in a Pin-in-a-Slot Joint......Page 283
6.3: Friction in a Straight Sliding Joint......Page 288
6.4: Problems......Page 304
7.1: Development of the Power Equation......Page 310
7.2: The Power Equation and the Inverse Dynamics Problem......Page 321
7.3: The Power Equation and the Forward Dynamics Problem......Page 331
7.4: Mechanical Advantage......Page 339
7.5: Efficiency and Mechanical Advantage......Page 350
7.6: Problems......Page 351
7.7: Programming Problems......Page 355
7.8: Programming Problems—Designing the Drive System of an Air Compressor......Page 358
7.9: Designing the Drive System of a Fail-Safe Quick Valve Shut-Off System......Page 365
7.10: Design Problems......Page 368
8.1: Freudenstein’s Equation for the Four Bar Mechanism......Page 371
8.2: Freudenstein’s Equation for the Crank-Slider Mechanism......Page 389
8.3: Design Problems......Page 400
Introduction......Page 406
9.1: Mathematical Model of a Planar Rigid Body Displacement......Page 407
9.2: The Three-Position Problem......Page 409
9.3: The Four-Position and Five-Position Problems......Page 414
9.4: Design Problems......Page 417
Index......Page 419